Integral Means of the Logarithmic Derivative of Blaschke Products

被引:0
作者
Javad Mashreghi
Mahmood Shabankhah
机构
[1] Université Laval,
关键词
Blaschke products; integral means; Hardy spaces; Bergman spaces; Primary 30D50; Secondary 26A12;
D O I
10.1007/BF03321737
中图分类号
学科分类号
摘要
Let B be a Blaschke product for the open unit disc with zeros (zn)n>1. We assume that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sum_{n=1}^{\infty}h(1-|z_n|)<\infty$\end{document}, where h is a given positive continuous functions. A typical example that has been extensively studied before is h(t) = tα, 0 < α < 1. Then we find upper bounds for the Hardy and Bergman means of the logarithmic derivative of B.
引用
收藏
页码:421 / 433
页数:12
相关论文
共 19 条
[1]  
Ahern P R(1974)On inner functions with H Michigan Math. J 21 115-127
[2]  
Clark D N(1976)-derivative Michigan Math. J 23 107-118
[3]  
Ahern P R(2003)On inner functions with B Proc. London Math. Soc. (3) 86 735-754
[4]  
Clark D N(1983)-derivative Michigan Math. J 30 221-229
[5]  
Chyzhykov I(2007)Linear differential equations and logarithmic derivative estimates Kodai Math. J 30 147-155
[6]  
Gundersen G(1988)On the H J. London Math. Soc (2) 37 88-104
[7]  
Heittokangas J(1998) classes of derivative of functions orthogonal to invariant subspaces Trans. Amer. Math. Soc 350 1225-1247
[8]  
Cohn W S(2007)On integral means of the derivatives of Blaschke products Kodai Math. J 30 263-279
[9]  
Gotoh Y(2002)Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates Kodai Math. J 25 191-208
[10]  
Gundersen G(1976)The possible orders of solutions of linear differential equations with polynomial coefficients Michigan Math. J 23 43-51