Using three-partite GHZ states for partial quantum error detection in entanglement-based protocols

被引:0
作者
M. G. M. Moreno
Alejandro Fonseca
Márcio M. Cunha
机构
[1] Universidade Federal de Pernambuco,Departamento de Física
[2] Universidade Federal de Pernambuco,Departamento de Matemática
[3] Universidade Federal Rural de Pernambuco,Departamento de Física
来源
Quantum Information Processing | 2018年 / 17卷
关键词
Entanglement; Error detection; GHZ states;
D O I
暂无
中图分类号
学科分类号
摘要
The problem of noise incidence on qubits taking part of bipartite entanglement-based protocols is addressed. It is shown that the use of a three-partite GHZ state and measurements instead of their EPR counterparts allows the experimenter to detect 2/3 of the times whenever one of the qubits involved in the measurement is affected by bit-flip noise through the mere observation of unexpected outcomes in the teleportation and superdense coding protocols when compared to the ideal case. It is shown that the use of post-selection after the detection of noise leads to an enhancement in the efficiency of the protocols. The idea is extended to any protocol using entangled states and measurements. Furthermore, a generalization is provided in which GHZ states and measurements with an arbitrary amount of qubits are used instead of EPR pairs, and remarkably, it is concluded that the optimal number of qubits is only three.
引用
收藏
相关论文
共 87 条
[1]  
Shor PW(1995)Scheme for reducing decoherence in quantum computer memory Phys. Rev. A 52 R2493-undefined
[2]  
Steane AM(1996)Error correcting codes in quantum theory Phys. Rev. Lett. 77 793-undefined
[3]  
Terhal BM(2015)Quantum error correction for quantum memories Rev. Mod. Phys. 87 307-undefined
[4]  
Devitt SJ(2013)Quantum error correction for beginners Rep. Prog. Phys. 76 076001-undefined
[5]  
Munro WJ(2009)Quantum entanglement Rev. Mod. Phys. 81 865-undefined
[6]  
Nemoto K(1998)Entanglement measures and purification procedures Phys. Rev. A 57 1619-undefined
[7]  
Horodecki R(2008)Entanglement theory and the second law of thermodynamics Nat. Phys. 4 873-undefined
[8]  
Horodecki P(1991)Quantum cryptography based on Bells theorem Phys. Rev. Lett. 67 661-undefined
[9]  
Horodecki M(1992)Communication via one- and two- particle operators on Einstein–Podolsky–Rosen states Phys. Rev. Lett. 69 2881-undefined
[10]  
Horodecki K(1993)Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels Phys. Rev. Lett. 70 1895-undefined