Joint discriminative subspace and distribution adaptation for unsupervised domain adaptation

被引:0
|
作者
Elahe Gholenji
Jafar Tahmoresnezhad
机构
[1] Urmia University of Technology,Faculty of IT and Computer Engineering
来源
Applied Intelligence | 2020年 / 50卷
关键词
Unsupervised domain adaptation; Discriminative subspace alignment; Classification model; Image classification; Domain shift;
D O I
暂无
中图分类号
学科分类号
摘要
In traditional machine learning algorithms, the classification models are learned on the training data (source domain) to reuse for labelling the test data (target domain) where the training and test samples are from the same distributions. However in nowadays applications, the existence of distribution shift across the source and target doamins degrades the model performance, significantly. Domain adaptation methods have been proposed to compensate domain shift problem by aligning the distributions across the source and target domains under various adaptation strategies. This paper addresses the robust image classification problem for unsupervised domain adaptation. Specifically, following three methods are proposed: Discriminative Subspace Learning (DSL), Joint Geometrical and Statistical Distribution Adaptation (GSDA), and Joint Subspace and Distribution Adaptation (DSL-GSDA). DSL is a subspace centric method that aligns the specific and shared features across domains. Indeed, DSL finds two projections to map the source and target data into independent subspaces by aligning the discriminant and global structures of domains. GSDA trends to find an adaptive classifier through statistical and geometrical distribution alignment and minimizes the prediction error. DSL-GSDA, as a combination of DSL and GSDA, consists of two subspace and distribution adaptation levels. DSL-GSDA uses DSL to build two aligned subspaces of source and target domains. The distributions of source and target data in new subspaces is adapted via GSDA. The proposed methods are evaluated on benchmark visual datasets for object, digit and face recongnition tasks. Visual datasets consist of image domains that have been captured under various real-world conditions where the domain shift is unavoidable. The experiment results show that DSL, GSDA and DSL-GSDA outperform other state-of-the-art domain adaptation methods by 6.19%, 1.48% and 1.99% improvement, respectively. Our source code is available at https://github.com/jtahmores/DSLGSDA (https://github.com/jtahmores/DSLGSDA).
引用
收藏
页码:2050 / 2066
页数:16
相关论文
共 50 条
  • [31] Unsupervised Domain Adaptation with Joint Domain-Adversarial Reconstruction Networks
    Chen, Qian
    Du, Yuntao
    Tan, Zhiwen
    Zhang, Yi
    Wang, Chongjun
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2020, PT II, 2021, 12458 : 640 - 656
  • [32] Sequence Distribution Matching for Unsupervised Domain Adaptation in ASR
    Li, Qingxuan
    Zhu, Han
    Luo, Liuping
    Cheng, Gaofeng
    Zhang, Pengyuan
    Sun, Jiasong
    Yan, Yonghong
    2022 13TH INTERNATIONAL SYMPOSIUM ON CHINESE SPOKEN LANGUAGE PROCESSING (ISCSLP), 2022, : 21 - 25
  • [33] Semantic adaptation network for unsupervised domain adaptation
    Zhou, Qiang
    Zhou, Wen'an
    Wang, Shirui
    NEUROCOMPUTING, 2021, 454 : 313 - 323
  • [34] Deep Joint Semantic Adaptation Network for Multi-source Unsupervised Domain Adaptation
    Cheng, Zhiming
    Wang, Shuai
    Yang, Defu
    Qi, Jie
    Xiao, Mang
    Yan, Chenggang
    PATTERN RECOGNITION, 2024, 151
  • [35] Mining Label Distribution Drift in Unsupervised Domain Adaptation
    Li, Peizhao
    Ding, Zhengming
    Liu, Hongfu
    ADVANCES IN ARTIFICIAL INTELLIGENCE, AI 2023, PT I, 2024, 14471 : 354 - 366
  • [36] Cluster adaptation networks for unsupervised domain adaptation
    Zhou, Qiang
    Zhou, Wen'an
    Wang, Shirui
    IMAGE AND VISION COMPUTING, 2021, 108
  • [37] Gradient Harmonization in Unsupervised Domain Adaptation
    Huang, Fuxiang
    Song, Suqi
    Zhang, Lei
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (12) : 10319 - 10336
  • [38] MODEL UNCERTAINTY FOR UNSUPERVISED DOMAIN ADAPTATION
    Lee, JoonHo
    Lee, Gyemin
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 1841 - 1845
  • [39] Unsupervised domain adaptation with progressive adaptation of subspaces
    Li, Weikai
    Chen, Songcan
    PATTERN RECOGNITION, 2022, 132
  • [40] Joint bi-adversarial learning for unsupervised domain adaptation
    Tian, Qing
    Zhou, Jiazhong
    Chu, Yi
    KNOWLEDGE-BASED SYSTEMS, 2022, 248