On stability, persistence, and Hopf bifurcation in fractional order dynamical systems

被引:0
作者
H. A. El-Saka
E. Ahmed
M. I. Shehata
A. M. A. El-Sayed
机构
[1] Mansoura University,Mathematics Department, Faculty of Science
[2] Mansoura University,Mathematics Department, Faculty of Science
[3] Alexandria University,Mathematics Department, Faculty of Science
来源
Nonlinear Dynamics | 2009年 / 56卷
关键词
Fractional order; Bifurcation;
D O I
暂无
中图分类号
学科分类号
摘要
This is a preliminary study about the bifurcation phenomenon in fractional order dynamical systems. Persistence of some continuous time fractional order differential equations is studied. A numerical example for Hopf-type bifurcation in a fractional order system is given, hence we propose a modification of the conditions of Hopf bifurcation. Local stability of some biologically motivated functional equations is investigated.
引用
收藏
页码:121 / 126
页数:5
相关论文
共 33 条
[11]  
Ahmed E.(2000)Memory effects and macroscopic manifestation of randomness Phys. Rev. E 61 4752-undefined
[12]  
El-Sayed A.(2004)Average conditions for permanence and extinction in non-autonomous Lotka-Volterra system J. Math. Anal. Appl. 299 663-undefined
[13]  
El-Saka H.(undefined)undefined undefined undefined undefined-undefined
[14]  
Diethelm K.(undefined)undefined undefined undefined undefined-undefined
[15]  
Ford N.J.(undefined)undefined undefined undefined undefined-undefined
[16]  
Freed A.D.(undefined)undefined undefined undefined undefined-undefined
[17]  
Diethelm K.(undefined)undefined undefined undefined undefined-undefined
[18]  
Ford N.J.(undefined)undefined undefined undefined undefined-undefined
[19]  
Freed A.D.(undefined)undefined undefined undefined undefined-undefined
[20]  
El-Mesiry E.M.(undefined)undefined undefined undefined undefined-undefined