Bifurcation and exact solutions for the (2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2+1$\end{document})-dimensional conformable time-fractional Zoomeron equation

被引:0
作者
Zhao Li
Tianyong Han
机构
[1] Chengdu University,College of Computer Science
关键词
Bifurcation; -expansion; Exact solution; Conformable fractional derivative; (; )-dimensional conformable time-fractional Zoomeron equation;
D O I
10.1186/s13662-020-03119-5
中图分类号
学科分类号
摘要
In this paper, the bifurcation and new exact solutions for the (2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2+1$\end{document})-dimensional conformable time-fractional Zoomeron equation are investigated by utilizing two reliable methods, which are generalized (G′/G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(G'/G)$\end{document}-expansion method and the integral bifurcation method. The exact solutions of the (2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2+1$\end{document})-dimensional conformable time-fractional Zoomeron equation are obtained by utilizing the generalized (G′/G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(G'/G)$\end{document}-expansion method, these solutions are classified as hyperbolic function solutions, trigonometric function solutions, and rational function solutions. Giving different parameter conditions, many integral bifurcations, phase portraits, and traveling wave solutions for the equation are obtained via the integral bifurcation method. Graphical representations of different kinds of the exact solutions reveal that the two methods are of significance for constructing the exact solutions of fractional partial differential equation.
引用
收藏
相关论文
共 95 条
[1]  
Kaur J.(2020)On explicit exact solutions and conservation laws for time fractional variable-coefficient coupled Burger’s equations Commun. Nonlinear Sci. Numer. Simul. 83 1-24
[2]  
Gupta R.K.(2020)Lie symmetry analysis and exact solutions of the time-fractional biological population model Phys. A, Stat. Mech. Appl. 540 1-11
[3]  
Kumar S.(2018)Lie symmetry analysis, exact solutions and conservation laws for the time fractional Caudrey–Dodd–Gibbon–Sawada–Kotera equation Commun. Nonlinear Sci. Numer. Simul. 59 222-234
[4]  
Zhang Z.Y.(2017)Exact solutions of space-time fractional EW and modified EW equations Chaos Solitons Fractals 96 132-138
[5]  
Li G.F.(2017)Applications of homogenous balanced principle on investigating exact solutions to a series of time fractional nonlinear PDEs Commun. Nonlinear Sci. Numer. Simul. 47 253-266
[6]  
Baleanu D.(2017)Analytical solution of the time-fractional Phi-4 equation by using modified residual power series method Nonlinear Dyn. 4 2525-2529
[7]  
Inc M.(2018)Method of separation variables combined with homogenous balanced principle for searching exact solutions of nonlinear time-fractional biological population model Commun. Nonlinear Sci. Numer. Simul. 63 88-100
[8]  
Yusuf A.(2019)Bifurcations and solutions for the generalized nonlinear Schrödinger equation Phys. Lett. A 383 126028-126033
[9]  
Aliyu A.I.(2018)Applications of integral bifurcation method together with homogeneous balanced principle on investigating exact solutions of time fractional nonlinear PDEs Nonlinear Dyn. 91 697-712
[10]  
Korkmaz A.(2009)Analytical solution for the space fractional diffusion equation by two-step Adomian decomposition method Commun. Nonlinear Sci. Numer. Simul. 41 1295-1306