Bayesian inference applied to spatio-temporal reconstruction of flows around a NACA0012 airfoil

被引:0
作者
Leroux Romain
Ludovic Chatellier
Laurent David
机构
[1] Université Paul Sabatier,Departement Fluides, Thermique, Combustion
[2] IRIT - Equipe ADRIA,undefined
[3] Institut P’,undefined
[4] CNRS-Universite de Poitiers-ENSMA,undefined
[5] UPR 3346,undefined
[6] SP2MI-Teleport 2,undefined
来源
Experiments in Fluids | 2014年 / 55卷
关键词
Kalman Filter; Proper Orthogonal Decomposition; Reconstruction Error; Projection Mode; Proper Orthogonal Decomposition Mode;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we shall investigate sequential data assimilation techniques to improve the stability of reduced-order models for fluid flows. The reduced-order model used relies on a Galerkin projection of Navier–Stokes equations on proper orthogonal decomposition (POD) basis vectors estimated from snapshots of the flow fields obtained with time-resolved particle image velocimetry (TR-PIV) measurements. The coefficients of the dynamical system are given through a least-squares regression technique applied to the experimental data and lead to a low-order model which is known to diverge, or damp, rapidly in time if left uncontrolled. In this context, a sequential data assimilation method based on a Bayesian approach is proposed. In this formalism, reduced-order models (ROMs) are modeled with discrete time from the hidden Markov processes. Given the whole trajectories of the POD temporal modes, the state of ROM coefficients initially provided by noisy PIV measurements are re-estimated from a Kalman filtering of the sequential data. Results are obtained for the flow around a NACA0012 airfoil at Reynolds numbers of 1000 and 2000 and angles of attack of 10∘,15∘,20∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{\circ },15^{\circ },20^{\circ }$$\end{document} and 30∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$30^{\circ }$$\end{document}.
引用
收藏
相关论文
共 107 条
[1]  
Anderson MJ(2001)Permutation tests for univariate or multivariate analysis of variance and regression Can J Fish Aquat Sci 58 626-639
[2]  
Andrews A(1968)A square root formulation of the kalman covariance equations AIAA J 6 1165-1166
[3]  
Aubry N(1991)On the hidden beauty of the proper orthogonal decompositon Theoret Comput Fluid Dyn 2 339-352
[4]  
Aubry N(1988)The dynamics of coherent structures in the wall region of a turbulent boundary layer J Fluid Mech 192 125-143
[5]  
Holmes P(2008)Optimal control of the cylinder wake in the laminar regime by trust region methods and pod reduced-order models J Comp Phys 227 7813-7840
[6]  
Lumley J(2005)Optimal rotary control of the cylinder wake using pod reduced order model Phys Fluids 3 1-21
[7]  
Stone E(1993)The proper orthogonal decomposition in the analysis of turbulent flows Ann Rev Fluid Mech 25 539-575
[8]  
Bergmann M(2001)Adaptive sampling with the ensemble transform kalman filter. Part I: theoretical aspects Mon Wea Rev 129 420-436
[9]  
Cordier L(2006)Low-dimensional modelling of a confined three dimensional wake flow J Fluid Mech 569 141-150
[10]  
Bergmann M(1998)Analysis scheme in the ensemble Kalman filter Mon Wea Rev 126 1719-1724