Relaxed μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\mu }$$\end{document}-quasimonotone variational inequalities in Hadamard manifolds

被引:0
作者
Alireza Amini-Hararandi
Majid Fakhar
Laleh Nasiri
机构
[1] University of Isfahan,Department of Mathematics
关键词
Hadamard manifold; variational inequality; relaxed ; -quasimonotone; relaxed ; -quasiconvex; Primary 49J40; Secondary 58E35; 47H04;
D O I
10.1007/s11784-019-0724-9
中图分类号
学科分类号
摘要
In this article, we introduce relaxed μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mu $$\end{document}-quasimonotone set-valued vector field on Hadamard manifolds and prove the existence of solutions of the Stampacchia variational inequality for such mappings. We also present the notion of relaxed μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mu $$\end{document}-quasiconvexity and show that the Upper Dini and Clarke–Rockafellar subdifferentials of a relaxed μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mu $$\end{document}-quasiconvex function is relaxed μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mu $$\end{document}-quasimonotone. Under relaxed μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mu $$\end{document}-quasiconvexity in the nondifferentiable sense, we establish the connection between the Stampacchia variational inequality problem and a nonsmooth constrained optimization problem.
引用
收藏
相关论文
共 75 条
  • [1] Aussel D(1995)Mean-value property and subdifferential criteria for lower semicontinuous functions Trans. Am. Math. Soc. 347 4147-4161
  • [2] Corvellec J-N(2008)Relaxed quasimonotone operators and relaxed quasiconvex functions J. Optim. Theory Appl. 138 329-339
  • [3] Lassonde M(2007)On the generalized monotonicity of variational inequalities Comput. Math. Appl. 53 910-917
  • [4] Bai MR(2012)Variational formulation for a general dynamic financial equilibrium problem: balance law and liability formula Nonlinear Anal. 75 1104-1123
  • [5] Hadjisavvas N(2016)Inexact proximal point methods for quasiconvex minimization on Hadamard manifolds J. Oper. Res. Soc. China 4 397-424
  • [6] Bai MR(2017)On the convergence rate of an inexact proximal point algorithm for quasiconvex minimization on Hadamard manifolds J. Oper. Res. Soc. China 5 457-467
  • [7] Zhou SZ(1965)Multivalued monotone nonlinear mappings and duality mappings in Banach spaces Trans. Am. Math. Soc. 71 780-785
  • [8] Ni GY(2016)Vector variational inequality with pseudoconvexity on Hadamard manifolds Optimization 65 2067-2080
  • [9] Barbagallo A(2012)Equilibrium problems in Hadamard manifolds J. Math. Anal. Appl. 388 61-77
  • [10] Daniele P(1997)Pseudomonotone variational inequality problems: existence of solutions Math. Program. 78 305-314