We show that every non-trivial subdirectly irreducible algebra in the variety generated by graph algebras is either a two-element left zero semigroup or a graph algebra itself. We characterize all the subdirectly irreducible algebras in this variety. From this we derive an example of a groupoid (graph algebra) that generates a variety with NP-complete membership problem. This is an improvement over the result of Z. Székely who constructed an algebra with similar properties in the signature of two binary operations.
机构:
Univ Tours, Inst Denis Poisson, Unite Mixte Rech 7013, CNRS, F-37200 Tours, France
Univ Orleans, Parc Grandmont, F-37200 Tours, FranceUniv Tours, Inst Denis Poisson, Unite Mixte Rech 7013, CNRS, F-37200 Tours, France
Bekaert, Xavier
Kowalzig, Niels
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Scientif 1, I-00133 Rome, ItalyUniv Tours, Inst Denis Poisson, Unite Mixte Rech 7013, CNRS, F-37200 Tours, France
机构:
Univ Tours, Inst Denis Poisson, Unite Mixte Rech 7013, CNRS, F-37200 Tours, France
Univ Orleans, Parc Grandmont, F-37200 Tours, FranceUniv Tours, Inst Denis Poisson, Unite Mixte Rech 7013, CNRS, F-37200 Tours, France
Bekaert, Xavier
Kowalzig, Niels
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Scientif 1, I-00133 Rome, ItalyUniv Tours, Inst Denis Poisson, Unite Mixte Rech 7013, CNRS, F-37200 Tours, France