Sobolev regularity for commutators of the fractional maximal functions

被引:0
作者
Feng Liu
Shuai Xi
机构
[1] Shandong University of Science and Technology,College of Mathematics and System Science
来源
Banach Journal of Mathematical Analysis | 2021年 / 15卷
关键词
Commutator; Fractional maximal function; Local fractional maximal function; Sobolev space; 42B25; 46E35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper the Sobolev regularity properties are investigated of the commutators of fractional maximal functions, both in the global and local case. Some new bounds for the derivatives of the above commutators will be established. As several applications, the boundedness for these operators in Sobolev spaces as well as the bounds of these operators on the Sobolev spaces with zero boundary values in the local setting are obtained.
引用
收藏
相关论文
共 67 条
[1]  
Agcayazi A(2015)A note on maximal commutators and commutators of maximal functions J. Math. Soc. Jpn. 67 581-593
[2]  
Gogatishvili M(2007)Functions of bounded variation, the derivative of the one dimensional maximal function, and applications to inequalities Trans. Am. Math. Soc. 359 2443-2461
[3]  
Koca K(2000)Commutators of for the maximal and sharp functions Proc. Am. Math. Soc. 128 3329-3334
[4]  
Mustafayev R(2007)On the product of functions in BMO and Ann. Inst. Fourier Grenoble 57 1405-1439
[5]  
Aldaz JM(2017)Derivative bounds for fractional maximal functions Trans. Am. Math. Soc. 369 4063-4092
[6]  
Pérez Lázaro J(2017)Endpoint Sobolev and BV continuity for maximal operators J. Funct. Anal. 273 3262-3294
[7]  
Bastero J(2008)On the regularity of maximal operators Proc. Am. Math. Soc. 136 4395-4404
[8]  
Milman M(2013)On the variation of maximal operators of convolution type J. Funct. Anal. 265 837-865
[9]  
Ruiz FJ(2018)Commutators of fractional maximal operator on generalized Orlicz–Morrey spaces Positivity 22 141-158
[10]  
Bonami A(1991)Weighted norm inequalities for commutators of strongly singular integrals Indiana Univ. Math. J. 40 1397-1420