Non-Real Eigenvalues for PT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal{PT}}}$$\end{document}-Symmetric Double Wells

被引:0
作者
Amina Benbernou
Naima Boussekkine
Nawal Mecherout
Thierry Ramond
Johannes Sjöstrand
机构
[1] Université de Mostaganem,Faculté des Sciences Exactes et Informatique
[2] Université Paris-Sud,Laboratoire de Mathématiques d’Orsay
[3] CNRS,Institut de Mathématiques de Bourgogne (UMR 5584 du CNRS)
[4] Université Paris-Saclay,undefined
[5] Université de Bourgogne,undefined
关键词
PT-symmetry; Schrödinger operator; double well; eigenvalues; 35P20; 35Q40; 81Q12; 81Q20;
D O I
10.1007/s11005-016-0852-8
中图分类号
学科分类号
摘要
We study small, PT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal{PT}}}$$\end{document}-symmetric perturbations of self-adjoint double-well Schrödinger operators in dimension n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n\ge 1}$$\end{document}. We prove that the eigenvalues stay real for a very small perturbation, then bifurcate to the complex plane as the perturbation gets stronger.
引用
收藏
页码:1817 / 1835
页数:18
相关论文
共 18 条
[1]  
Bender C.M.(2010)-symmetry and necessary and sufficient conditions for the reality of energy eigenvalues Phys. Lett. A 374 1616-1620
[2]  
Mannheim P.D.(2006)Perturbation theory of J. Phys. A 39 10019-10027
[3]  
Caliceti E.(2014)-symmetric Hamiltonians Discr. Contin. Dyn. Syst. Ser. B 19 1955-1967
[4]  
Cannata F.(1984)An existence criterion for the Commun. Partial Differ. Equ. 9 337-408
[5]  
Graffi S.(1964)-symmetric phase transition Ark. Mat. 5 281-285
[6]  
Caliceti E.(2002)Multiple wells in the semiclassical limit I J. Math. Phys. 43 205-214
[7]  
Graffi S.(2002)A theorem of the Phragmén–Lindelöf type for second-order elliptic operators J. Math. Phys. 43 2814-2816
[8]  
Helffer B.(2002)Pseudo-hermiticity versus J. Math. Phys. 43 3944-3951
[9]  
Sjöstrand J.(1984)-symmetry: the necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian Ann. Math. 2 120 89-289
[10]  
Lithner L.(2000)Pseudo-hermiticity versus Phys. Lett. B 483 284-undefined