Mathematical modelling of pattern formation in activator–inhibitor reaction–diffusion systems with anomalous diffusion

被引:0
|
作者
B. Datsko
M. Kutniv
A. Włoch
机构
[1] Rzeszow University of Technoogy,
[2] Institute for Applied Problems of Mechanics and Mathematics,undefined
来源
Journal of Mathematical Chemistry | 2020年 / 58卷
关键词
Mathematical modeling; Autocatalytic chemical reaction; Self-organization phenomena; Anomalous diffusion; Reaction–diffusion systems; 35K61; 35B36; 35R11; 70K50;
D O I
暂无
中图分类号
学科分类号
摘要
Auto-wave solutions in nonlinear time-fractional reaction–diffusion systems are investigated. It is shown that stability of steady-state solutions and their subsequent evolution are mainly determined by the eigenvalue spectrum of a linearized system and level of anomalous diffusion (orders of fractional derivatives). The results of linear stability analysis are confirmed by computer simulations. To illustrate the influence of anomalous diffusion on stability properties and possible dynamics in fractional reaction–diffusion systems, we generalized two classical activator–inhibitor nonlinear models: FitzHugh–Nagumo and Brusselator. Based on them a common picture of typical nonlinear solutions in nonlinear incommensurate time-fractional activator–inhibitor systems is presented.
引用
收藏
页码:612 / 631
页数:19
相关论文
共 50 条
  • [41] Anomalous diffusion approach to non-exponential relaxation in complex physical systems
    Stanislavsky, Aleksander
    Weron, Karina
    Weron, Aleksander
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 24 (1-3) : 117 - 126
  • [42] Anomalous Diffusion and Non-Markovian Reaction of Particles near an Adsorbing Colloidal Particle
    Gryczak, Derik W.
    Lenzi, Ervin K.
    Rosseto, Michely P.
    Evangelista, Luiz R.
    da Silva, Luciano R.
    Lenzi, Marcelo K.
    Zola, Rafael S.
    FLUIDS, 2024, 9 (10)
  • [43] On systems of reaction-diffusion equations with a balance law: The sequel
    Kirane, Mokhtar
    Alsaedi, Ahmed
    Ahmad, Bashir
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (05) : 1244 - 1260
  • [44] Turing Pattern Formation in a Semiarid Vegetation Model with Fractional-in-Space Diffusion
    Tian, Canrong
    BULLETIN OF MATHEMATICAL BIOLOGY, 2015, 77 (11) : 2072 - 2085
  • [45] Anomalous Diffusion in Systems with Concentration-Dependent Diffusivity: Exact Solutions and Particle Simulations
    Hansen, Alex
    Flekkoy, Eirik G.
    Baldelli, Beatrice
    FRONTIERS IN PHYSICS, 2020, 8
  • [46] Anomalous diffusion in one-dimensional disordered systems: a discrete fractional Laplacian method
    Padgett, J. L.
    Kostadinova, E. G.
    Liaw, C. D.
    Busse, K.
    Matthews, L. S.
    Hyde, T. W.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (13)
  • [47] THE NUMERICAL METHODS FOR SOLVING OF THE ONE-DIMENSIONAL ANOMALOUS REACTION-DIFFUSION EQUATION 1
    Blasik, Marek
    JOURNAL OF THEORETICAL AND APPLIED MECHANICS, 2024, 62 (02) : 365 - 376
  • [48] Pore size effect on the methanol anomalous diffusion in the mesoporous catalyst pellets for methanol-to-olefin reaction
    Zhokh, Alexey A.
    Strizhak, Peter E.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 112 : 1072 - 1080
  • [49] Mathematical modeling of non-linear reaction-diffusion process in autocatalytic reaction: Akbari-Ganji method
    Yokeswari, G.
    Jayasimman, I. Paulraj
    Rajendran, L.
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2024, 19 (04):
  • [50] Lack of anomalous diffusion in linear translationally-invariant systems determined by only one initial condition
    Khorrami, Mohammad
    Shariati, Ahmad
    Aghamohammadi, Amir
    Fatollahi, Amir H.
    PHYSICS LETTERS A, 2012, 376 (05) : 687 - 691