Remarks on infinite dimensional duality

被引:0
作者
A. Maugeri
F. Raciti
机构
[1] Università di Catania,Dipartimento di Matematica e Informatica
来源
Journal of Global Optimization | 2010年 / 46卷
关键词
Strong duality; Quasi-relative interior; Tangent cone; Normal cone;
D O I
暂无
中图分类号
学科分类号
摘要
We present an improvement of a recent duality theorem and a new result which stresses the fact that the strong duality, without assumptions on the interior of the ordering cone, is related to the normal cone.
引用
收藏
页码:581 / 588
页数:7
相关论文
共 36 条
  • [1] Borwein J.M.(1992)Quasi-relative interior and duality: part I Math. Program. 57 15-48
  • [2] Lewis A.S.(2008)Duality theory for a dynamic Walrasian pure exchange economy Pac. J. Optim. 4 437-547
  • [3] Donato M.B.(2007)Infinite dimensional duality and applications Math. Ann. 339 221-239
  • [4] Maugeri A.(2002)Variational inequalities and discrete and continuum models of network equilibrium problems Math. Comput. Model. 35 689-708
  • [5] Milasi M.(2007)General infinite dimensional duality and applications to evolutionary networks and equilibrium problems Optim. Lett. 1 227-243
  • [6] Vitanza C.(2008)Preface [Special issue on the proceedings of the first AMS-UMI joint meeting, held in Pisa, June 12-16, 2002] J. Global Optim. 28 3-4
  • [7] Daniele P.(2006)On a class of random variational inequalities on random sets Numer. Funct. Anal. Optim. 27 619-638
  • [8] Giuffré S.(2006)Random equilibrium problems on networks Math. Comput. Model. 43 880-891
  • [9] Idone G.(2003)Variational inequalities and the elastic-plastic torsion problem J. Optim. Theory Appl. 117 489-501
  • [10] Maugeri A.(2005)Variational inequalities and transport planning for an elastic and continuous model J. Ind. Manag. Optim. 1 81-86