Hörmander’s method for the characteristic Cauchy problem and conformal scattering for a nonlinear wave equation

被引:0
作者
Jérémie Joudioux
机构
[1] Albert-Einstein-Institut,
[2] Max-Planck-Institut für Gravitationsphysik,undefined
来源
Letters in Mathematical Physics | 2020年 / 110卷
关键词
Characteristic initial value problem; Conformal techniques; Asymptotic analysis; 35L05; 35P25; 53A30; 35Q75;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of this note is to prove the existence of a conformal scattering operator for the cubic defocusing wave equation on a non-stationary background. The proof essentially relies on solving the characteristic initial value problem by the method developed by Hörmander. This method consists in slowing down the propagation speed of the waves to transform a characteristic initial value problem into a standard Cauchy problem.
引用
收藏
页码:1391 / 1423
页数:32
相关论文
共 33 条
[1]  
Andersson L(1994)On hyperboloidal Cauchy data for vacuum Einstein equations and obstructions to smoothness of Scri Commun. Math. Phys. 161 533-568
[2]  
Chruściel PT(1990)The global Goursat problem and scattering for nonlinear wave equations J. Funct. Anal. 93 239-269
[3]  
Baez JC(1984)Solution globale d’une équation non linéaire sur une variété hyperbolique J. Math. Pures Appl. (9) 63 377-390
[4]  
Segal IE(2002)Erratum: Existence of non-trivial, vacuum, asymptotically simple spacetimes Class. Quantum Gravity 19 3389-L79
[5]  
Zhou Z-F(2002)Existence of non-trivial, vacuum, asymptotically simple spacetimes Class. Quantum Gravity 19 L71-217
[6]  
Cagnac F(2006)On the asymptotics for the vacuum Einstein constraint equations J. Differ. Geom. 73 185-515
[7]  
Choquet-Bruhat Y(2000)Conformal Infinity Living Rev. Relativ. 3 4-292
[8]  
Chruściel PT(1980)Radiation fields and hyperbolic scattering theory Math. Proc. Camb. Philos. Soc. 88 483-295
[9]  
Delay E(1998)Nonlinear small data scattering for the wave equation in J. Math. Soc. Jpn. 50 253-277
[10]  
Chruściel PT(2003)Conformal conservation law, time decay and scattering for nonlinear wave equations J. Anal. Math. 91 269-65