Symmetric Squares of Hecke L-Functions and Fourier Coefficients of Cusp Forms

被引:0
作者
O. M. Fomenko
机构
[1] St.Petersburg Department of the Steklov Mathematical Institute,
关键词
Fourier; Fourier Coefficient; Cusp Form;
D O I
10.1023/B:JOTH.0000035246.29112.8c
中图分类号
学科分类号
摘要
Let Sk(Г0(N)) be the space of cusp forms of even weight k for Г0(N), let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{F}_0 $$ \end{document} be the set of all newforms in Sk(Г0(N)), and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{H}_2 (s,f)$$ \end{document} be the symmetric square of the Hecke L-function of a form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$f \in \mathcal{F}_0 $$ \end{document}. It is proved that for N=p we have \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sum\limits_{f \in \mathcal{F}_0 ,\mathcal{H}_2 (1/2,f) \ne 0} {1 \gg N^{1 - \varepsilon } ,} $$ \end{document} where the ≪-constant depends only on ɛ and k. Let f(z)∈Sk(Г0(N)): \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$f(x) = \sum\limits_{n = 1}^\infty {a_f (n)e^{2\pi inz} ,{\text{ }}a_f (n)n^{ - (k - 1)/2} = b_f (n).} $$ \end{document} The distribution of values of the sums \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sum\limits_{n \leqslant X} {b_f (n){\text{ and }}\sum\limits_{n \leqslant X} {b_f (n)^2 } } $$ \end{document} for increasing X and N is studied. Bibliography: 13 titles.
引用
收藏
页码:3699 / 3708
页数:9
相关论文
共 18 条
[1]  
Shimura G.(1975)On the holomorphy of certain Dirichlet series Proc. London Math. Soc. 31 79-98
[2]  
Hoffstein J.(1994)Coefficients of Maass forms and the Siegel zero (with an appendix by D. Goldfeld, J. Hoffstein, and D. Lieman, "An effective zero free region") Ann. Math. 140 161-181
[3]  
Lockhart P.(2001)The second moment of the symmetric square Ann. Acad. Sci. Fenn. Math. 26 465-482
[4]  
Iwaniec H.(2001)-functions Zap. Nauchn. Semin. POMI 276 300-311
[5]  
Michel P.(1999)On the behavior of automorphic Duke Math. J. 97 545-577
[6]  
Fomenko O. M.(1933)-functions at the center of the critical strip Math. Ann. 108 75-90
[7]  
Vanderkam J. M.(1939)The rank of quotients of Proc. Cambridge Phil. Soc. 35 357-372
[8]  
Walficz A.(1940)0( Arch. Math. Naturvid. 43 47-50
[9]  
Rankin R. A.(1985)) Zap. Nauchn. Semin. POMI 134 117-137
[10]  
Selberg A.(1988)Über die Koeffizientensummen einiger Modulformen Zap. Nauchn. Semin. LOMI 168 158-179