Operator-Valued Frames for the Heisenberg Group

被引:0
作者
Benjamin Robinson
William Moran
Douglas Cochran
Stephen D. Howard
机构
[1] Arizona State University,School of Mathematical & Statistical Sciences
[2] RMIT University,undefined
[3] Defence Science & Technology Organisation,undefined
来源
Journal of Fourier Analysis and Applications | 2015年 / 21卷
关键词
Operator-valued frames; G-frames; Representations ; Heisenberg Group; Sampling; 42C15;
D O I
暂无
中图分类号
学科分类号
摘要
A classical result of Duffin and Schaeffer gives conditions under which a discrete collection of characters on R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}$$\end{document}, restricted to E=(-γ,γ)⊊(-1/2,1/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E=(-\gamma ,\gamma )\subsetneq (-1/2,1/2)$$\end{document}, forms a Hilbert-space frame for L2(E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(E)$$\end{document}. For the case of characters with period one, this is just the Poisson Summation Formula. Duffin and Schaeffer show that perturbations preserve the frame condition in this case. This paper gives analogous results for the real Heisenberg group Hn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_n$$\end{document}, where frames are replaced by operator-valued frames. The Selberg Trace Formula is used to show that perturbations of the orthogonal case continue to behave as operator-valued frames. This technique enables the construction of decompositions of elements of L2(E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(E)$$\end{document} for suitable subsets E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document} of Hn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_n$$\end{document} in terms of representations of Hn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_n$$\end{document}.
引用
收藏
页码:1384 / 1397
页数:13
相关论文
共 19 条
[1]  
Avdonin SA(1974)On the question of Riesz bases of exponential functions in Vestn. Leningr. Univ. Ser. Mat. 13 5-12
[2]  
Casazza PG(2008)Fusion frames and distributed processing Appl. Comput. Harmon. Anal. 25 114-132
[3]  
Kutyniok G(1986)Painless nonorthogonal expansions J. Math. Phys. 27 1271-366
[4]  
Li S(1952)A class of nonharmonic Fourier series Trans. Am. Math. Soc. 72 341-556
[5]  
Daubechies I(1992)Irregular sampling theorems and series expansions of band-limited functions J. Math. Anal. Appl. 167 530-1254
[6]  
Grossmann A(1964)The exact value of the Paley-Wiener constant Dokl. Akad. Nauk SSSR 155 1253-6385
[7]  
Meyer Y(2009)Operator-valued frames Trans. Am. Math. Soc. 361 6349-194
[8]  
Duffin R(1999)On lower bounds of exponential frames J. Fourier Anal. Appl. 5 187-190
[9]  
Schaeffer A(1971)Decomposition of the Am. J. Math. 93 173-452
[10]  
Feichtinger HG(2006)-space of a general compact nilmanifold J. Math. Anal. Appl. 322 437-93