Boundedness of Fractional Maximal Operator and its Commutators on Generalized Orlicz–Morrey Spaces

被引:0
作者
Vagif S. Guliyev
Fatih Deringoz
机构
[1] Ahi Evran University,Department of Mathematics
[2] Institute of Mathematics and Mechanics,undefined
来源
Complex Analysis and Operator Theory | 2015年 / 9卷
关键词
Generalized Orlicz–Morrey space; Fractional maximal operator; Commutator; BMO; 42B20; 42B25; 42B35; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
We consider generalized Orlicz–Morrey spaces MΦ,φ(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{\Phi ,\varphi }({\mathbb {R}^n})$$\end{document} including their weak versions WMΦ,φ(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$WM_{\Phi ,\varphi }({\mathbb {R}^n})$$\end{document}. We find the sufficient conditions on the pairs (φ1,φ2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\varphi _{1},\varphi _{2})$$\end{document} and (Φ,Ψ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\Phi , \Psi )$$\end{document} which ensures the boundedness of the fractional maximal operator Mα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{\alpha }$$\end{document} from MΦ,φ1(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{\Phi ,\varphi _1}({\mathbb {R}^n})$$\end{document} to MΨ,φ2(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{\Psi ,\varphi _2}({\mathbb {R}^n})$$\end{document} and from MΦ,φ1(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{\Phi ,\varphi _1}({\mathbb {R}^n})$$\end{document} to WMΨ,φ2(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$WM_{\Psi ,\varphi _2}({\mathbb {R}^n})$$\end{document}. As applications of those results, the boundedness of the commutators of the fractional maximal operator Mb,α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{b,\alpha }$$\end{document} with b∈BMO(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b \in BMO({\mathbb {R}^n})$$\end{document} on the spaces MΦ,φ(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{\Phi ,\varphi }({\mathbb {R}^n})$$\end{document} is also obtained. In all the cases the conditions for the boundedness are given in terms of supremal-type inequalities on weights φ(x,r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (x,r)$$\end{document}, which do not assume any assumption on monotonicity of φ(x,r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (x,r)$$\end{document} on r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document}.
引用
收藏
页码:1249 / 1267
页数:18
相关论文
共 44 条
[1]  
Adams DR(1975)A note on Riesz potentials Duke Math. J. 42 765-778
[2]  
Burenkov V(2010)Boundedness of the fractional maximal operator in local Morrey-type spaces Comp. Var. Elliptic Equ. 55 739-758
[3]  
Gogatishvili A(1999)Strong and weak type inequalities for some classical operators in Orlicz spaces J. Lond. Math. Soc. 60 187-202
[4]  
Guliyev VS(1976)Factorization theorems for Hardy spaces in several variables Ann. Math. 103 611-635
[5]  
Mustafayev R(2014)Boundedness of maximal and singular operators on generalized Orlicz–Morrey spaces Oper. Theory 242 139-158
[6]  
Cianchi A(2012)Boundedness on Orlicz spaces for multilinear commutators of Calderón–Zygmund operators on non-homogeneous spaces Taiwanese J. Math. 16 2203-2238
[7]  
Coifman RR(2014)Generalized fractional integrals and their commutators over non-homogeneous metric measure spaces Taiwanese J. Math. 18 509-557
[8]  
Rochberg R(2011)Boundedness of sublinear operators and commutators on generalized Morrey Space Integr. Equ. Oper. Theory 71 327-355
[9]  
Weiss G(2010)Boundedness of the maximal, potential and singular operators in the generalized variable exponent Morrey spaces Math. Scand. 197 285-304
[10]  
Deringoz F(2013)On the boundedness of the fractional maximal operator, Riesz potential and their commutators in generalized Morrey spaces Oper. Theory 229 175-194