Transport and continuity equations with (very) rough noise

被引:4
作者
Bellingeri, C. [1 ]
Djurdjevac, A. [2 ]
Friz, P. K. [1 ,3 ]
Tapia, N. [1 ,3 ]
机构
[1] TU Berlin, Berlin, Germany
[2] FU Berlin, Berlin, Germany
[3] WIAS, Berlin, Germany
来源
PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2021年 / 2卷 / 04期
基金
欧洲研究理事会;
关键词
Rough transport equation; Rough continuity equation; First order rough partial differential equations; DIFFERENTIAL-EQUATIONS; CONSTRUCTION; PATH;
D O I
10.1007/s42985-021-00101-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Existence and uniqueness for rough flows, transport and continuity equations driven by general geometric rough paths are established.
引用
收藏
页数:26
相关论文
共 26 条
  • [1] Transport equation and Cauchy problem for BV vector fields
    Ambrosio, L
    [J]. INVENTIONES MATHEMATICAE, 2004, 158 (02) : 227 - 260
  • [2] Bailleul I., 2017, Ann. Facult Sci. Toulous. Math, V26, P795, DOI DOI 10.5802/AFST.1553
  • [3] Stochastic ODEs and stochastic linear PDEs with critical drift: regularity, duality and uniqueness
    Beck, Lisa
    Flandoli, Franco
    Gubinelli, Massimiliano
    Maurelli, Mario
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24
  • [4] Partial differential equations driven by rough paths
    Caruana, Michael
    Friz, Peter
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (01) : 140 - 173
  • [5] Averaging along irregular curves and regularisation of ODEs
    Catellier, R.
    Gubinelli, M.
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2016, 126 (08) : 2323 - 2366
  • [6] Rough linear transport equation with an irregular drift
    Catellier, Remi
    [J]. STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2016, 4 (03): : 477 - 534
  • [7] A priori estimates for rough PDEs with application to rough conservation laws
    Deya, Aurelien
    Gubinelli, Massimiliano
    Hofmanova, Martina
    Tindel, Samy
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 276 (12) : 3577 - 3645
  • [8] DIEHL J., 2017, Ann. Fac. Sci. Toulouse Math., V26, P911, DOI 10.5802/afst.1556
  • [9] ORDINARY DIFFERENTIAL-EQUATIONS, TRANSPORT-THEORY AND SOBOLEV SPACES
    DIPERNA, RJ
    LIONS, PL
    [J]. INVENTIONES MATHEMATICAE, 1989, 98 (03) : 511 - 547
  • [10] Well-posedness of the transport equation by stochastic perturbation
    Flandoli, F.
    Gubinelli, M.
    Priola, E.
    [J]. INVENTIONES MATHEMATICAE, 2010, 180 (01) : 1 - 53