Hopf bifurcation and its control in a 3D autonomous system

被引:0
作者
Liangqiang Zhou
Albert Kabbah
机构
[1] Nanjing University of Aeronautics and Astronautics,Department of Mathematics
[2] MIIT,Key Laboratory of Mathematical Modelling and High Performance Computing of Air Vehicles(NUAA)
来源
The European Physical Journal Special Topics | 2022年 / 231卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The first section of this paper discusses the stability and Hopf bifurcation for a new dynamical system using stability theory, the center manifold as well as normal form theory. To verify the analytical results, numerical simulations are performed. The second section focuses on controlling the Hopf bifurcation with a robust controller capable of handling a wide range of parameter values. By fine tuning the control parameters, the controller ensures that Hopf bifurcation occurred at P0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{0}$$\end{document}. Furthermore, we postpone the Hopf bifurcation at P+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{+}$$\end{document} by adjusting the control parameters.
引用
收藏
页码:2115 / 2124
页数:9
相关论文
共 43 条
  • [1] Lee BHK(1999)Nonlinear aeroelastic analysis of airfoils: bifurcation and chaos Prog. Aerosp. Sci. 35 205-334
  • [2] Price SJ(1963)Deterministic nonperiodic flow J. Atmos. Sci. 20 130-141
  • [3] Wong YS(2004)Hopf bifurcation control using nonlinear feedback with polynomial functions Int. J. Bifurcation Chaos 14 1683-1704
  • [4] Lorenz EN(2017)Hopf bifurcation and chaos control in a new chaotic system via hybrid control strategy Chin. J. Phys. 55 64-70
  • [5] Yu P(2016)Dynamics at infinity, degenerate Hopf and zero-Hopf bifurcation for Kingni-Jafari system with hidden attractors Int. J. Bifurcation Chaos 26 1650125-429
  • [6] Chen G(2010)Anti-control of Hopf bifurcation in the new chaotic system with two stable node-foci Appl. Math. Comput. 217 422-588
  • [7] Cai P(2015)Dynamics and delayed feedback control for a 3D jerk system with hidden attractor Nonlinear Dyn. 82 577-174
  • [8] Yuan ZZ(2019)Hopf bifurcation analysis of KdV-Burgers-Kuramoto chaotic system with distributed delay feedback Int. J. Bifurcation Chaos 29 1950011-191
  • [9] Wei Z(2019)Control strategies for Hopf bifurcation in a chaotic associative memory Neurocomputing 323 157-672
  • [10] Moroz I(2015)Chaos control and bifurcation behavior for a Sprott E system with distributed delay feedback Int. J. Autom. Comput. 12 182-2493