Bianchi Type-III String Cosmological Model with Bulk Viscous Fluid in Lyra Geometry

被引:0
作者
P. K. Sahoo
A. Nath
S. K. Sahu
机构
[1] Birla Institute of Technology and Science Pilani,Department of Mathematics
[2] Utkal University,Department of Mathematics
来源
Iranian Journal of Science and Technology, Transactions A: Science | 2017年 / 41卷
关键词
String cosmology; Lyra geometry; Bianchi-III metric; Bulk viscous fluid;
D O I
暂无
中图分类号
学科分类号
摘要
Bianchi type-III cosmological model for a cloud of string with bulk viscosity is studied in Lyra geometry. To get deterministic models of universe, we have assumed two conditions (i) ξ=ξ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi = \xi_{0}$$\end{document} = constant and (ii) shear scalar σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \sigma \right)$$\end{document} proportional to the scalar expansion θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \theta \right)$$\end{document}. This condition leads to B=Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B = C^{n}$$\end{document} where ξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi$$\end{document} is the coefficient of bulk viscosity, B and C are metric potentials and n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} a constant. Some physical and geometrical aspects of the model are also discussed.
引用
收藏
页码:243 / 248
页数:5
相关论文
共 108 条
  • [1] Bali R(2008)Bianchi type-I cosmological model for perfect fluid distribution in Lyra geometry J Math Phys 49 032502-1533
  • [2] Chandnani NK(2008)Bianchi type-III bulk viscous dust filled universe in Lyra geometry Astrophys Sp Sci 318 225-3297
  • [3] Bali R(2009)Bianchi type V barotropic perfect fluid cosmological model in lyra geometry Int J Theo Phys 48 1523-1438
  • [4] Chandnani NK(2008)Bulk viscous Bianchi Type I cosmological models with time-dependent cosmological term Λ Int J Theor Phys 47 3288-11
  • [5] Bali R(2010)Bianchi type III cosmological models for barotropic perfect fluid distribution with variable G and Λ Int J Theor Phys 49 1431-842
  • [6] Chandnani NK(1990)String cosmology in Bianchi I space-time Pramana 34 1-186
  • [7] Bali R(1988)FLRW cosmological models in Lyra’s manifold with time dependent displacement field Austral J Phys 41 833-823
  • [8] Singh JP(1983)A special law of variation for Hubble’s parameter Nuovo Cimento B 74 182-870
  • [9] Bali R(1980)Exact spatially homogeneous cosmologies Gen Relativ Gravit 12 805-1703
  • [10] Tinker S(1970)Cosmological theory based on Lyra’s geometry Aust J Phys 23 863-L39