Sensitivity enhancement of a graphene, zinc sulfide-based surface plasmon resonance biosensor with an Ag metal configuration in the visible region

被引:0
作者
Bhishma Karki
Arun Uniyal
Brajlata Chauhan
Amrindra Pal
机构
[1] Tri-Chandra Multiple Campus,Department of Physics
[2] Tribhuvan University,Department of EECE
[3] DIT University,undefined
来源
Journal of Computational Electronics | 2022年 / 21卷
关键词
Surface plasmon resonance; Zinc sulfide; Sensitivity; Reflectance; Analyte;
D O I
暂无
中图分类号
学科分类号
摘要
A biosensor based on the modified Kretschmann configuration is proposed here. The sensitivity of the conventional prism-based sensor using angular interrogation is low. To enhance the sensor's performance, layers of zinc sulfide (ZnS) and graphene have been deposited over the metal layer. The angular interrogation technique is used to analyze the performance of the sensor. The thickness of the Ag metal has been optimized. The thickness of the Ag metal is taken as 50 nm because minimum reflectance has been achieved. With the combinations of the four layers of ZnS and one graphene layer, the maximum sensitivity attained is 292.8∘/RIU\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$292.8^\circ /RIU$$\end{document}. Performance parameters such as detection accuracy, FWHM, and quality factor of the sensor have been evaluated as obtained as 0.16 deg-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{ deg}}^{ - 1}$$\end{document}, 6.37 deg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{ deg}}$$\end{document}, 46 RIU-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RIU^{ - 1}$$\end{document}, respectively. The proposed sensor has potential application in the field of biochemical and biological analyte detection.
引用
收藏
页码:445 / 452
页数:7
相关论文
共 106 条
  • [1] Lee HC(2015)Demonstration of an ultrasensitive refractive-index plasmonic sensor by enabling its quadrupole resonance in phase interrogation Opt. Lett. 40 5152-193
  • [2] Li CT(2016)Waveguide-coupled surface phonon resonance sensors with super-resolution in the mid-infrared region Opt. Lett. 41 1582-137
  • [3] Chen H-F(2006)Plasmonics: Merging photonics and electronics at nanoscale dimensions Science (80-.) 311 189-304
  • [4] Yen T-J(2016)Theoretical modeling of a self-referenced dual mode SPR sensor utilizing indium tin oxide film Opt. Commun. 369 131-166
  • [5] Zheng G(1983)Surface plasmon resonance for gas detection and biosensing Sens. Actuators 4 299-15
  • [6] Chen Y(2014)Field enhancement and target localization impact on the biosensitivity of nanostructured plasmonic sensors J. Opt. Soc. Am. B 31 1223-539
  • [7] Bu L(2019)Sensitivity enhancement of SPR optical biosensor based on Graphene–MoS2 structure with nanocomposite layer Opt. Mater. (Amst) 88 161-12
  • [8] Xu L(1999)Surface plasmon resonance sensors: review Sens. Actuators B Chem. 54 3-410
  • [9] Su W(2003)Present and future of surface plasmon resonance biosensors Anal. Bioanal. Chem. 377 528-2136
  • [10] Ozbay E(2021)Sensitivity enhancement using anisotropic black phosphorus and antimonene in bi-metal layer-based surface plasmon resonance biosensor Superlattices Microstruct. 156 106969-3363