Maximizing the Minimum and Maximum Forcing Numbers of Perfect Matchings of Graphs

被引:0
作者
Qian Qian Liu
He Ping Zhang
机构
[1] Lanzhou University,School of Mathematics and Statistics
来源
Acta Mathematica Sinica, English Series | 2023年 / 39卷
关键词
Perfect matching; minimum forcing number; maximum forcing number; forcing spectrum; complete multipartite graph; 05C70; 05C75; 05C35;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a simple graph with 2n vertices and a perfect matching. The forcing number f(G, M) of a perfect matching M of G is the smallest cardinality of a subset of M that is contained in no other perfect matching of G. Among all perfect matchings M of G, the minimum and maximum values of f(G, M) are called the minimum and maximum forcing numbers of G, denoted by f(G) and F (G), respectively. Then f(G) ≤ F (G) ≤ n − 1. Che and Chen (2011) proposed an open problem: how to characterize the graphs G with f(G) = n − 1. Later they showed that for a bipartite graph G, f(G)= n − 1 if and only if G is complete bipartite graph Kn,n. In this paper, we completely solve the problem of Che and Chen, and show that f(G)= n − 1 if and only if G is a complete multipartite graph or a graph obtained from complete bipartite graph Kn,n by adding arbitrary edges in one partite set. For all graphs G with F (G) = n − 1, we prove that the forcing spectrum of each such graph G forms an integer interval by matching 2-switches and the minimum forcing numbers of all such graphs G form an integer interval from ⌊n2⌋\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lfloor{n\over 2}\rfloor$$\end{document} to n − 1.
引用
收藏
页码:1289 / 1304
页数:15
相关论文
共 81 条
[1]  
Abeledo H(2007)Unimodularity of the Clar number problem Linear Algebra Appl. 420 441-448
[2]  
Atkinson G W(2004)On the forced matching numbers of bipartite graphs Discrete Math. 281 1-12
[3]  
Adams P(2004)On the spectrum of the forced matching number of graphs Australas. J. Combin. 30 147-160
[4]  
Mahdian M(2018)On the extendability of quasi-strongly regular graphs with diameter 2 Graphs Combin. 34 711-726
[5]  
Mahmoodian E S(2013)Conjugated circuits and forcing edges MATCH Commun. Math. Comput. Chem. 69 721-732
[6]  
Afshani P(2011)Forcing on perfect matchings — A survey MATCH Commun. Math. Comput. Chem. 66 93-136
[7]  
Hatami H(2019)The minimum forcing number of perfect matchings in the hypercube Discrete Math. 342 1060-1062
[8]  
Mahmoodian E S(1994)Bonds fixed by fixing bonds J. Chem. Inf. Comput. Sci. 34 297-304
[9]  
Alajbegović H(1991)Graphical properties of polyhexes: perfect matching vector and forcing J. Math. Chem. 6 295-306
[10]  
Huskanović A(2011)On forcing matching number of boron-nitrogen fullerene graphs Discrete Appl. Math. 159 1581-1593