A generalization of almost sure local limit theorem of uniform empirical process

被引:0
作者
Chenglian Zhu
机构
[1] Huaiyin Normal University,School of Mathematical Science
来源
Journal of Inequalities and Applications | / 2015卷
关键词
almost sure central limit theorem; almost sure local central limit theorem; uniform empirical process; 60E15; 60F15;
D O I
暂无
中图分类号
学科分类号
摘要
Let {Xn;n≥1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{X_{n}; n\geq1\}$\end{document} be a sequence of independent and identically distributed U[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$U[0, 1]$\end{document}-distributed random variables. In this paper, we are concerned with the almost sure local central limit theorem of ∥Fn∥\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\|F_{n}\|$\end{document} and sup0≤t≤1Fn(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sup_{0\leq t\leq1}F_{n}(t)$\end{document}, and some corresponding results are derived.
引用
收藏
相关论文
共 32 条
  • [11] Lin ZY(2006)An extension of almost sure central limit theory Stat. Probab. Lett. 76 191-202
  • [12] Peligrad M(2012)An improved result in almost sure central limit theory for products of partial sums with stable distribution Chin. Ann. Math., Ser. B 33 919-930
  • [13] Shao QM(2011)Almost sure limit theorems for stable distributions Stat. Probab. Lett. 81 662-672
  • [14] Dudziński M(2011)Almost sure central limit theory for products of sums of partial sums Stat. Probab. Lett. 81 662-672
  • [15] Peng ZX(2014)A general result in almost sure central limit theory for random fields Statistics 48 965-970
  • [16] Wang LL(2011)A note on almost sure central limit theorem for uniform empirical processes J. Jilin Univ. Sci. Ed. 49 687-689
  • [17] Nadarajah S(2015)A general result of the almost sure central limit theorem of uniform empirical process Statistics 49 98-103
  • [18] Dudziński M(1951)Probability limit theorems assuming only the first moment Mem. Am. Math. Soc. 6 1-19
  • [19] Hörmann S(1993)On almost sure local and global central limit theorems Probab. Theory Relat. Fields 97 321-337
  • [20] Wu QY(1958)On the deviations of the empiric distribution function of vector chance variables Trans. Am. Math. Soc. 87 173-186