A generalization of almost sure local limit theorem of uniform empirical process

被引:0
作者
Chenglian Zhu
机构
[1] Huaiyin Normal University,School of Mathematical Science
来源
Journal of Inequalities and Applications | / 2015卷
关键词
almost sure central limit theorem; almost sure local central limit theorem; uniform empirical process; 60E15; 60F15;
D O I
暂无
中图分类号
学科分类号
摘要
Let {Xn;n≥1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{X_{n}; n\geq1\}$\end{document} be a sequence of independent and identically distributed U[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$U[0, 1]$\end{document}-distributed random variables. In this paper, we are concerned with the almost sure local central limit theorem of ∥Fn∥\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\|F_{n}\|$\end{document} and sup0≤t≤1Fn(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sup_{0\leq t\leq1}F_{n}(t)$\end{document}, and some corresponding results are derived.
引用
收藏
相关论文
共 32 条
  • [1] Brosamler GA(1988)An almost everywhere central limit theorem Math. Proc. Camb. Philos. Soc. 104 561-574
  • [2] Schatte P(1988)On strong versions of the central limit theorem Math. Nachr. 137 249-256
  • [3] Fahrner I(1998)On almost sure max-limit theorems Stat. Probab. Lett. 37 229-236
  • [4] Stadtmüller U(1998)Almost sure convergence in extreme value theory Math. Nachr. 190 43-50
  • [5] Cheng SH(2002)Almost sure limit theorems for the maximum of stationary Gaussian sequences Stat. Probab. Lett. 58 195-203
  • [6] Peng L(2006)Almost sure max-limits for nonstationary Gaussian sequence Stat. Probab. Lett. 76 1175-1184
  • [7] Qi YC(1995)A note on the almost sure central limit theorem for weakly dependent random variables Stat. Probab. Lett. 22 131-136
  • [8] Csáki E(2003)A note on the almost sure central limit theorem for some dependent random variables Stat. Probab. Lett. 61 31-40
  • [9] Gonchigdanzan K(2009)Almost sure central limit theorem for partial sums and maxima Math. Nachr. 282 632-636
  • [10] Chen SQ(2008)The almost sure central limit theorems in the joint version for the maxima and sums of certain stationary Gaussian sequences Stat. Probab. Lett. 78 347-357