Representation theory of Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}^n$$\end{document}-graded Lie algebras

被引:0
作者
Yuly Billig
机构
[1] Carleton University,School of Mathematics and Statistics
关键词
Vertex Operator; Central Extension; Cartan Subalgebra; Quantum Torus; Generalize Verma Module;
D O I
10.1007/s40863-016-0044-6
中图分类号
学科分类号
摘要
引用
收藏
页码:53 / 58
页数:5
相关论文
共 10 条
[1]  
Berman S(1999)Irreducible representations for toroidal Lie algebras J. Algebra 221 188-231
[2]  
Billig Y(2007)Jet modules Can. J. Math. 59 712-729
[3]  
Billig Y(2014)Representations of Lie algebra of vector fields on a torus and chiral de Rham complex Trans. Am. Math. Soc. 366 4697-4731
[4]  
Billig Y(2008)Differential equations in vertex algebras and simple modules for the Lie algebra of vector fields on a torus Adv. Math. 218 1972-2004
[5]  
Futorny V(2004)Weight modules over exp-polynomial Lie algebras J. Pure Appl. Algebra 191 23-42
[6]  
Billig Y(undefined)undefined undefined undefined undefined-undefined
[7]  
Molev A(undefined)undefined undefined undefined undefined-undefined
[8]  
Zhang R(undefined)undefined undefined undefined undefined-undefined
[9]  
Billig Y(undefined)undefined undefined undefined undefined-undefined
[10]  
Zhao K(undefined)undefined undefined undefined undefined-undefined