Quasilinear elliptic equations on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{N}}$$\end{document} with singular potentials and bounded nonlinearity

被引:0
作者
Jiabao Su
机构
[1] Capital Normal University,School of Mathematical Sciences
关键词
35J05; 35J20; 35J60; 58C20; Quasilinear elliptic equation; Sobolev embedding; Bounded nonlinearity;
D O I
10.1007/s00033-011-0138-z
中图分类号
学科分类号
摘要
We study the existence and multiplicity of nontrivial radial solutions of the quasilinear equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{\begin{array}{ll}-{div}(|\nabla u|^{p-2}\nabla u)+V(|x|)|u|^{p-2}u=Q(|x|)f(u),\quad x\in \mathbb{R}^N,\\u(x) \rightarrow 0, \quad |x|\rightarrow \infty \end{array}\right.$$\end{document}with singular radial potentials V,Q and bounded nonlinearity f. The approaches used here are based on a compact embedding from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${W_r^{1,p}(\mathbb{R}^N; V)}$$\end{document} into \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^1(\mathbb{R}^N; Q)}$$\end{document} and minimax methods. A uniqueness result is given for f ≡ 1.
引用
收藏
页码:51 / 62
页数:11
相关论文
共 22 条
[1]  
Ambrosetti A.(1973)Dual variational methods in critical point theory and applications J. Funct. Anal. 14 349-381
[2]  
Rabinowitz P.H.(2001)Nonlinear Schrödinger equations with steep potential well Commun. Contemp. Math. 3 549-569
[3]  
Bartsch T.(1995)Existence and multiplicity results for some superlinear elliptic problems on Comm. Partial Differ. Equ. 20 1725-1741
[4]  
Pankov A.(2005)Schrödinger equations with concave and convex nonlinearities Z. Angew. Math. Phys 56 609-629
[5]  
Wang Z.-Q.(2003)Mountain pass solutions to equations of p-Laplacian ype Nonlinear Anal 54 1205-1219
[6]  
Bartsch T.(2003)Symmetry of solutions of a semilinear elliptic equation with unbounded coefficients Differ. Integral Equ. 16 769-786
[7]  
Wang Z.-Q.(1977)Existence of solitary waves in higher dimensions Comm. Math. Phys 55 149-162
[8]  
Liu Z.(2010)Weighted Sobolev embeddings and radial solutions of inhomogeneous quasilinear elliptic equations Commun. Pure Appl. Anal. 9 885-904
[9]  
Wang Z.-Q.(2007)Nonlinear Schodinger equations with unbounded and decaying radial potentials Commun. Contemp. Math. 9 571-583
[10]  
De Nápoli P.(2007)Weighted Sobolev embedding with unbounded and decaying radial potentials J. Differ. Equ. 238 201-219