Power Series for Solutions of the 3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal D}$$\end{document}-Navier-Stokes System on R3

被引:0
作者
Yakov Sinai
机构
[1] Princeton University,Department of Mathematics
[2] Landau Institute of Theoretical Physics,undefined
关键词
Navier-Stokes System; Fourier transform; power series;
D O I
10.1007/s10955-005-8670-x
中图分类号
学科分类号
摘要
In this paper we study the Fourier transform of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3 \mathcal{D}$$\end{document}-Navier-Stokes System without external forcing on the whole space R3. The properties of solutions depend very much on the space in which the system is considered. In this paper we deal with the space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi (\alpha , \alpha )$$\end{document} of functions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v(k ) \, = \, \frac{c(k)}{|k|^\alpha}$$\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha = 2 + \epsilon , \, \epsilon > 0$$\end{document} and c (k) is bounded, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sup_{k \in R^3 \, \smallsetminus \, 0} \; | c ( k ) | < \infty$$\end{document}. We construct the power series which converges for small t and gives solutions of the system for bounded intervals of time. These solutions can be estimated at infinity (in k-space) by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\exp \{ - {\rm const} \, \sqrt{t} | k |\}$$\end{document}.
引用
收藏
页码:779 / 803
页数:24
相关论文
共 13 条
[1]  
Bakhtin Yu.Yu.(2004)About solutions with infinite energy and enstrophy of Navier-Stokes system Russian Math. Surveys 59 17-5040
[2]  
Dinaburg E.I.(2003)Majorizing kernels and stochastic cascades with applications to incompressible Navier-Stokes equations TAMS 355 5003-18
[3]  
Sinai Ya.G.(2000)Remark on the rate of decay of higher order derivatives for solutions to the Navier-Stokes equations in J. Funct. Anal. 172 1-undefined
[4]  
Bhattacharya R.(undefined)undefined undefined undefined undefined-undefined
[5]  
Chen L.(undefined)undefined undefined undefined undefined-undefined
[6]  
Dobson S.(undefined)undefined undefined undefined undefined-undefined
[7]  
Guenther R.(undefined)undefined undefined undefined undefined-undefined
[8]  
Orum C.(undefined)undefined undefined undefined undefined-undefined
[9]  
Ossiander M.(undefined)undefined undefined undefined undefined-undefined
[10]  
Thomann E.(undefined)undefined undefined undefined undefined-undefined