Deformation quantization for almost-K¨ahler manifolds

被引:0
作者
Schlichenmaier M. [1 ,2 ]
机构
[1] Mathematics Laboratory, University of Luxembourg, L-1511, 162A Avenue de la Faiencerie, Campus Limpertsberg
[2] Mathematics Laboratory, University of Luxembourg, L-1511, 162A Avenue de la Faiencerie, Campus Limpertsberg
关键词
D O I
10.2991/jnmp.2004.11.s1.6
中图分类号
学科分类号
摘要
On an arbitrary almost-K¨ahler manifold, starting from a natural affine connection with nontrivial torsion which respects the almost-K¨ahler structure, in joint work with A. Karabegov a Fedosov-type deformation quantization on this manifold was constructed. This contribution reports on the result and supplies an overview of the essential steps in the construction. On this way Fedosov’s geometric method is explained. © 2004 Taylor & Francis Group, LLC.
引用
收藏
页码:49 / 54
页数:5
相关论文
共 14 条
  • [1] De Wilde M., Lecomte P.B.A., Existence of star products and of formal deformations of the Poisson-Lie algebra of arbitrary symplectic manifolds, Lett. Math. Phys., 7, pp. 487-496, (1983)
  • [2] Omori H., Maeda Y., Yoshioka Y., Weyl manifolds and deformation quantization, Advances in Math., 85, pp. 224-255, (1991)
  • [3] Fedosov B.V.
  • [4] Kontsevich M.
  • [5] Karabegov A.V., Deformation quantization with separation of variables on a Kähler manifold, Commun. Math. Phys., 180, pp. 745-755, (1996)
  • [6] Bordemann M., Waldmann S., A Fedosov star product of the Wick type for Kähler manifolds, Lett. Math. Phys., 41, pp. 243-253, (1997)
  • [7] Karabegov A.V., Cohomological classification of deformation quantizations with separation of variables, Lett. Math. Phys., 43, pp. 347-357, (1998)
  • [8] Berezin F.A., Quantization, Math. USSR-Izv., 8, pp. 1109-1165, (1974)
  • [9] Bordemann M., Meinrenken E., Schlichenmaier M., Toeplitz quantization of Kähler manifolds and gl(n), n → ∞ limits, Commun. Math. Phys., 165, pp. 281-296, (1994)
  • [10] Schlichenmaier M.