The superconformal index of class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{S} $\end{document} theories of type D

被引:0
作者
Madalena Lemos
Wolfger Peelaers
Leonardo Rastelli
机构
[1] Stony Brook University,C.N. Yang Institute for Theoretical Physics
关键词
Conformal and W Symmetry; Integrable Hierarchies; Matrix Models; Extended Supersymmetry;
D O I
10.1007/JHEP05(2014)120
中图分类号
学科分类号
摘要
We consider the superconformal index of class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{S} $\end{document} theories of type D, which arise by compactification of the (2, 0) Dn theories on a punctured Riemann surface \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{C} $\end{document}. We also allow for the presence of twist lines on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{C} $\end{document} associated to the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{\mathbb{Z}}_2} $\end{document} outer automorphism of Dn. For the two-parameter slice (p = 0, q, t) in the space of superconformal fugacities, we determine the 2d TQFT that computes the index.
引用
收藏
相关论文
共 64 条
[1]  
Gaiotto D(2012)N = 2 dualities JHEP 08 034-undefined
[2]  
Alday LF(2010)Liouville correlation functions from four-dimensional gauge theories Lett. Math. Phys. 91 167-undefined
[3]  
Gaiotto D(2010)S-duality and 2d topological QFT JHEP 03 032-undefined
[4]  
Tachikawa Y(2007)An index for 4 dimensional super conformal theories Commun. Math. Phys. 275 209-undefined
[5]  
Gadde A(2006)Counting chiral primaries in N = 1, D = 4 superconformal field theories Nucl. Phys. B 747 329-undefined
[6]  
Pomoni E(2009)Six-dimensional D(N ) theory and four-dimensional SO-USp quivers JHEP 07 067-undefined
[7]  
Rastelli L(2011)N = 2 S-duality via outer-automorphism twists J. Phys. A 44 182001-undefined
[8]  
Razamat SS(2010)Tinkertoys for Gaiotto duality JHEP 11 099-undefined
[9]  
Kinney J(2013)Tinkertoys for the D JHEP 02 110-undefined
[10]  
Maldacena JM(2013) series Int. J. Mod. Phys. A 28 1340006-undefined