On Blowup in Supercritical Wave Equations

被引:0
作者
Roland Donninger
Birgit Schörkhuber
机构
[1] Rheinische Friedrich-Wilhelms-Universität Bonn,Mathematisches Institut
[2] Universität Wien,Fakultät für Mathematik
来源
Communications in Mathematical Physics | 2016年 / 346卷
关键词
Wave Equation; Nonlinear Wave Equation; Blowup Solution; Blowup Time; Supercritical Wave Equation;
D O I
暂无
中图分类号
学科分类号
摘要
We study the blowup behavior for the focusing energy-supercritical semilinear wave equation in 3 space dimensions without symmetry assumptions on the data. We prove the stability in H2×H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H^2\times H^1}$$\end{document} of the ODE blowup profile.
引用
收藏
页码:907 / 943
页数:36
相关论文
共 89 条
[1]  
Antonini C.(2001)Optimal bounds on positive blow-up solutions for a semilinear wave equation Int. Math. Res. Not. 21 1141-1167
[2]  
Merle F.(2004)On blowup for semilinear wave equations with a focusing nonlinearity Nonlinearity 17 2187-2201
[3]  
Bizoń P.(2012)Global well-posedness and scattering for the defocusing energy-supercritical cubic nonlinear wave equation J. Funct. Anal. 263 1609-1660
[4]  
Chmaj T.(2014)The radial defocusing energy-supercritical cubic nonlinear wave equation in Nonlinearity 27 1859-1877
[5]  
Tabor Z.(1986)The blow-up boundary for nonlinear wave equations Trans. Am. Math. Soc. 297 223-241
[6]  
Bulut A.(2011)On stable self-similar blowup for equivariant wave maps Comm. Pure Appl. Math. 64 1095-1147
[7]  
Bulut A.(2014)Stable self-similar blowup in energy supercritical Yang-Mills theory Math. Z. 278 1005-1032
[8]  
Caffarelli L.A.(2014)Exotic blowup solutions for the Michigan Math. J. 63 451-501
[9]  
Friedman A.(2013) focusing wave equation in Math. Ann. 357 89-163
[10]  
Donninger R.(2012)Nonscattering solutions and blowup at infinity for the critical wave equation Dyn. Partial Differ. Equ. 9 63-87