An approximation of the minimum vertex cover in a graph

被引:0
作者
Hiroshi Nagamochi
Toshihide Ibaraki
机构
[1] Kyoto University,Department of Applied Mathematics and Physics
来源
Japan Journal of Industrial and Applied Mathematics | 1999年 / 16卷
关键词
graph; vertex cover; matching; cycle; approximation algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
For a given undirected graphG withn vertices andm edges, we present an approximation algorithm for the minimum vertex cover problem. Our algorithm finds a vertex cover within\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$2 - \frac{{8m}}{{13n^2 + 8m}}$$ \end{document} of the optimal size inO(nm) time.
引用
收藏
页码:369 / 375
页数:6
相关论文
共 11 条
  • [1] Baker B.S.(1994)Approximation algorithm for NP-complete problems on planar graphs J. ACM 41 153-180
  • [2] Bar-Yehuda R.(1985)A local-ration theorem for approximating the weighted vertex cover problem Annals of Discrete Mathematics 25 27-45
  • [3] Even S.(1996)Improved non-approximability results for vertex cover with density constraints Lecture Notes in Computer Science 1090 333-342
  • [4] Clementi A.E.F.(1994)Improved approximations of independent sets in bounded-degree graphs Lecture Notes in Computer Science 824 195-206
  • [5] Trevisan L.(1973)An SIAM J. Comput. 2 225-231
  • [6] Halldórsson M.M.(1991) algorithm for maximum matching in bipartite graphs J. Comput. System Sci. 43 425-440
  • [7] Radhakrishnan J.(undefined)Optimization, approximation, and complexity classes undefined undefined undefined-undefined
  • [8] Hopcroft J.E.(undefined)undefined undefined undefined undefined-undefined
  • [9] Karp R.M.(undefined)undefined undefined undefined undefined-undefined
  • [10] Papadimitriou C.H.(undefined)undefined undefined undefined undefined-undefined