Deep learning-based, fully automated, pediatric brain segmentation

被引:2
|
作者
Kim, Min-Jee [1 ]
Hong, Eunpyeong [2 ]
Yum, Mi-Sun [1 ]
Lee, Yun-Jeong [3 ]
Kim, Jinyoung [2 ]
Ko, Tae-Sung [1 ]
机构
[1] Ulsan Univ, Coll Med, Dept Pediat, Asan Med Ctr,Childrens Hosp, 88 Olymp Ro 43-Gil, Seoul 05505, South Korea
[2] Vuno Inc, Seoul 06541, South Korea
[3] Kyungpook Natl Univ, Kyungpook Natl Univ Hosp, Dept Pediat, Daegu, South Korea
关键词
Dravet syndrome; Deep learning-based segmentation; Convolutional neural network; VUNO Med-DeepBrain; SURFACE-BASED ANALYSIS; MRI SEGMENTATION; IMAGES; CHILDREN;
D O I
10.1038/s41598-024-54663-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The purpose of this study was to demonstrate the performance of a fully automated, deep learning-based brain segmentation (DLS) method in healthy controls and in patients with neurodevelopmental disorders, SCN1A mutation, under eleven. The whole, cortical, and subcortical volumes of previously enrolled 21 participants, under 11 years of age, with a SCN1A mutation, and 42 healthy controls, were obtained using a DLS method, and compared to volumes measured by Freesurfer with manual correction. Additionally, the volumes which were calculated with the DLS method between the patients and the control group. The volumes of total brain gray and white matter using DLS method were consistent with that volume which were measured by Freesurfer with manual correction in healthy controls. Among 68 cortical parcellated volume analysis, the volumes of only 7 areas measured by DLS methods were significantly different from that measured by Freesurfer with manual correction, and the differences decreased with increasing age in the subgroup analysis. The subcortical volume measured by the DLS method was relatively smaller than that of the Freesurfer volume analysis. Further, the DLS method could perfectly detect the reduced volume identified by the Freesurfer software and manual correction in patients with SCN1A mutations, compared with healthy controls. In a pediatric population, this new, fully automated DLS method is compatible with the classic, volumetric analysis with Freesurfer software and manual correction, and it can also well detect brain morphological changes in children with a neurodevelopmental disorder.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Deep Learning-Based Deep Brain Stimulation Targeting and Clinical Applications
    Park, Seong-Cheol
    Cha, Joon Hyuk
    Lee, Seonhwa
    Jang, Wooyoung
    Lee, Chong Sik
    Lee, Jung Kyo
    FRONTIERS IN NEUROSCIENCE, 2019, 13
  • [22] Deep Learning-Based Fully Automatic Segmentation of the Paranasal Sinuses in Chronic Rhinosinusitis Patients Using Computed Tomographic Images
    Wang, Yuhang
    Zhang, Xiaolei
    Du, Weidong
    Dai, Na
    Lyv, Yi
    Wu, Keying
    Tian, Yiyang
    Jie, Yuxin
    Lin, Yu
    Kang, Weipiao
    IEEE ACCESS, 2025, 13 : 16444 - 16454
  • [23] Research on brain image segmentation based on deep learning
    Wang Y.
    Zhao Z.
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2020, 37 (04): : 721 - 729
  • [24] Fully automated identification of brain abnormality from whole-body FDG-PET imaging using deep learning-based brain extraction and statistical parametric mapping
    Whi, Wonseok
    Choi, Hongyoon
    Paeng, Jin Chul
    Cheon, Gi Jeong
    Kang, Keon Wook
    Lee, Dong Soo
    EJNMMI PHYSICS, 2021, 8 (01)
  • [25] Fully automated identification of brain abnormality from whole-body FDG-PET imaging using deep learning-based brain extraction and statistical parametric mapping
    Wonseok Whi
    Hongyoon Choi
    Jin Chul Paeng
    Gi Jeong Cheon
    Keon Wook Kang
    Dong Soo Lee
    EJNMMI Physics, 8
  • [26] Fully Automated Segmentation of Connective Tissue Compartments for CT-Based Body Composition Analysis A Deep Learning Approach
    Nowak, Sebastian
    Faron, Anton
    Luetkens, Julian A.
    Geissler, Helena L.
    Praktiknjo, Michael
    Block, Wolfgang
    Thomas, Daniel
    Sprinkart, Alois M.
    INVESTIGATIVE RADIOLOGY, 2020, 55 (06) : 357 - 366
  • [27] Fully automated segmentation of optic disk from retinal images using deep learning techniques
    Zabihollahy, F.
    Ukwatta, E.
    MEDICAL IMAGING 2019: COMPUTER-AIDED DIAGNOSIS, 2019, 10950
  • [28] Fully Automated Segmentation of the Temporal Bone from Micro-CT using Deep Learning
    Nikan, Soodeh
    Agrawal, Sumit K.
    Ladak, Hanif M.
    MEDICAL IMAGING 2020: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2021, 11317
  • [29] Deep learning-based convolutional neural network for intramodality brain MRI synthesis
    Osman, Alexander F., I
    Tamam, Nissren M.
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2022, 23 (04):
  • [30] Deep Learning-Based Approach for the Semantic Segmentation of Bright Retinal Damage
    Silva, Cristiana
    Colomer, Adrian
    Naranjo, Valery
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2018, PT I, 2018, 11314 : 164 - 173