Homoclinic orbits of sub-linear Hamiltonian systems with perturbed terms

被引:0
作者
Haiyan Lv
Guanwei Chen
机构
[1] Anyang Normal University,School of Mathematics and Statistics
[2] University of Jinan,School of Mathematical Sciences
来源
Boundary Value Problems | / 2021卷
关键词
Perturbed Hamiltonian systems; Sub-linear; Homoclinic orbits; 37J45; 37K05;
D O I
暂无
中图分类号
学科分类号
摘要
By using variational methods, we obtain the existence of homoclinic orbits for perturbed Hamiltonian systems with sub-linear terms. To the best of our knowledge, there is no published result focusing on the perturbed and sub-linear Hamiltonian systems.
引用
收藏
相关论文
共 38 条
  • [1] Alves C.O.(2003)Existence of homoclinic orbits for asymptotically periodic systems involving Duffing-like equation Appl. Math. Lett. 16 639-642
  • [2] Carrião P.C.(1973)Dual variational methods in critical point theory and applications J. Funct. Anal. 14 349-381
  • [3] Miyagaki O.H.(1999)Existence of homoclinic solutions for a class of time-dependent Hamiltonian systems J. Math. Anal. Appl. 230 157-172
  • [4] Ambrosetti A.(2014)Homoclinic orbits for second order Hamiltonian systems with asymptotically linear terms at infinity Adv. Differ. Equ. 2014 903-918
  • [5] Rabinowitz P.H.(2015)Superquadratic or asymptotically quadratic Hamiltonian systems: ground state homoclinic orbits Ann. Mat. Pura Appl. 194 499-510
  • [6] Carrião P.C.(2016)Homoclinic orbits of first order nonlinear Hamiltonian systems with asymptotically linear nonlinearities at infinity Topol. Methods Nonlinear Anal. 47 693-727
  • [7] Miyagaki O.H.(1991)Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials J. Am. Math. Soc. 4 131-145
  • [8] Chen G.(1993)Periodic and homoclinic solutions to a class of Hamiltonian systems with the potentials changing sign Dyn. Syst. Appl. 2 1395-1413
  • [9] Chen G.(2009)Homoclinics for asymptotically quadratic and superquadratic Hamiltonian systems Nonlinear Anal. 71 303-324
  • [10] Chen G.(1996)Periodic and homoclinic solutions to a class of Hamiltonian systems with indefinite potential in sign Boll. Unione Mat. Ital., B (7) 10 375-389