On Conformal Field Theory of SLE(κ,ρ)

被引:0
|
作者
Kalle Kytölä
机构
[1] University of Helsinki,Department of Mathematics and Statistics
来源
Journal of Statistical Physics | 2006年 / 123卷
关键词
SLE; conformal field theory;
D O I
暂无
中图分类号
学科分类号
摘要
SLE(κ ρ), a generalization of chordal Schramm-Löwner evolution (SLE), is discussed from the point of view of statistical mechanics and conformal field theory (CFT). Certain ratios of CFT correlation functions are shown to be martingales. The interpretation is that SLE(κ ρ) describes an interface in a statistical mechanics model whose boundary conditions are created in the Coulomb gas formalism by vertex operators with charges αj = \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha_j = \frac{\rho_j}{2 \sqrt{\kappa}}$$\end{document}. The total charge vanishes and therefore the partition function has a simple product form. We also suggest a generalization of SLE(κ ρ)
引用
收藏
页码:1169 / 1181
页数:12
相关论文
共 50 条
  • [1] On conformal field theory of SLE(κ, ρ)
    Kytola, Kalle
    JOURNAL OF STATISTICAL PHYSICS, 2006, 123 (06) : 1169 - 1181
  • [2] Conformal field theory for annulus SLE: partition functions and martingale-observables
    Sung-Soo Byun
    Nam-Gyu Kang
    Hee-Joon Tak
    Analysis and Mathematical Physics, 2023, 13
  • [3] Conformal field theory for annulus SLE: partition functions and martingale-observables
    Byun, Sung-Soo
    Kang, Nam-Gyu
    Tak, Hee-Joon
    ANALYSIS AND MATHEMATICAL PHYSICS, 2023, 13 (01)
  • [4] GAUSSIAN FREE FIELD AND CONFORMAL FIELD THEORY
    Kang, Nam-Gyu
    Makarov, Nikolai G.
    ASTERISQUE, 2013, (353) : 1 - +
  • [5] Conformal field theory in two dimensions
    Nagi, J
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2006, 21 (11): : 2237 - 2258
  • [6] Conformal field theory in conformal space
    Preitschopf, C
    Vasiliev, MA
    NUCLEAR PHYSICS B, 1999, 549 (1-2) : 450 - 480
  • [7] Convergence in Conformal Field Theory
    Yi-Zhi Huang
    Chinese Annals of Mathematics, Series B, 2022, 43 : 1101 - 1124
  • [8] Decoherence in conformal field theory
    del Campo, Adolfo
    Takayanagi, Tadashi
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (02)
  • [9] Decoherence in Conformal Field Theory
    Adolfo del Campo
    Tadashi Takayanagi
    Journal of High Energy Physics, 2020
  • [10] Convergence in Conformal Field Theory
    Huang, Yi-Zhi
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2022, 43 (06) : 1101 - 1124