Spatial collinear restricted four-body problem with repulsive Manev potential

被引:0
作者
Esther Barrabés
Josep M. Cors
Claudio Vidal
机构
[1] Universitat de Girona,Dept. Informàtica Matemàtica Aplicada i Estadística
[2] Universitat Politècnica de Catalunya,Dept. de Matemàtiques
[3] Universidad del Bío-Bío,Grupo de Investigación en Sistemas Dinámicos y Aplicaciones
来源
Celestial Mechanics and Dynamical Astronomy | 2017年 / 129卷
关键词
Restricted four-body problem; Repulsive Manev potential; Equilibrium points; Stability; 70F10; 70F15; 70H12;
D O I
暂无
中图分类号
学科分类号
摘要
We outline some aspects of the dynamics of an infinitesimal mass under the Newtonian attraction of three point masses in a symmetric collinear relative equilibria configuration when a repulsive Manev potential (-1/r+e/r2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-1/r +e/r^{2}$$\end{document}), e>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e>0$$\end{document}, is applied to the central mass. We investigate the relative equilibria of the infinitesimal mass and their linear stability as a function of the mass parameter β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}, the ratio of mass of the central body to the mass of one of two remaining bodies, and e. We also prove the nonexistence of binary collisions between the central body and the infinitesimal mass.
引用
收藏
页码:153 / 176
页数:23
相关论文
共 50 条
  • [21] A study of the equilibrium dynamics of the test particle in the collinear circular restricted four-body problem with non-spherical central primary
    Suraj, M. S.
    Bhushan, M.
    Asique, M. C.
    ASTRONOMY AND COMPUTING, 2024, 48
  • [22] Effect of Stokes drag in the restricted four-body problem with variable mass
    Mittal, Amit
    Pal, Krishan
    Suraj, Md Sanam
    Aggarwal, Rajiv
    NEW ASTRONOMY, 2023, 103
  • [23] Finiteness in the planar restricted four-body problem
    Kulevich J.L.
    Roberts G.E.
    Smith C.J.
    Qualitative Theory of Dynamical Systems, 2009, 8 (2) : 357 - 370
  • [24] Global Regularization of a Restricted Four-Body Problem
    Alvarez-Ramirez, Martha
    Delgado, Joaquin
    Vidal, Claudio
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (07):
  • [25] Asymptotic orbits in the restricted four-body problem
    Papadakis, K. E.
    PLANETARY AND SPACE SCIENCE, 2007, 55 (10) : 1368 - 1379
  • [26] A Restricted Four-body Problem for the Figure-eight Choreography
    Lara, Ricardo
    Bengochea, Abimael
    REGULAR & CHAOTIC DYNAMICS, 2021, 26 (03) : 222 - 235
  • [27] Dynamical properties of the restricted four-body problem with radiation pressure
    Kalvouridis, T. J.
    Arribas, M.
    Elipe, A.
    MECHANICS RESEARCH COMMUNICATIONS, 2006, 33 (06) : 811 - 817
  • [28] Nonlinear stability analysis in a equilateral restricted four-body problem
    Martha Alvarez-Ramírez
    J. E. F. Skea
    T. J. Stuchi
    Astrophysics and Space Science, 2015, 358
  • [29] On the "blue sky catastrophe" termination in the restricted four-body problem
    Burgos-Garcia, Jaime
    Delgado, Joaquin
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2013, 117 (02) : 113 - 136
  • [30] Nonlinear stability analysis in a equilateral restricted four-body problem
    Alvarez-Ramirez, Martha
    Skea, J. E. F.
    Stuchi, T. J.
    ASTROPHYSICS AND SPACE SCIENCE, 2015, 358 (01)