Spatial collinear restricted four-body problem with repulsive Manev potential

被引:0
作者
Esther Barrabés
Josep M. Cors
Claudio Vidal
机构
[1] Universitat de Girona,Dept. Informàtica Matemàtica Aplicada i Estadística
[2] Universitat Politècnica de Catalunya,Dept. de Matemàtiques
[3] Universidad del Bío-Bío,Grupo de Investigación en Sistemas Dinámicos y Aplicaciones
来源
Celestial Mechanics and Dynamical Astronomy | 2017年 / 129卷
关键词
Restricted four-body problem; Repulsive Manev potential; Equilibrium points; Stability; 70F10; 70F15; 70H12;
D O I
暂无
中图分类号
学科分类号
摘要
We outline some aspects of the dynamics of an infinitesimal mass under the Newtonian attraction of three point masses in a symmetric collinear relative equilibria configuration when a repulsive Manev potential (-1/r+e/r2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-1/r +e/r^{2}$$\end{document}), e>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e>0$$\end{document}, is applied to the central mass. We investigate the relative equilibria of the infinitesimal mass and their linear stability as a function of the mass parameter β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}, the ratio of mass of the central body to the mass of one of two remaining bodies, and e. We also prove the nonexistence of binary collisions between the central body and the infinitesimal mass.
引用
收藏
页码:153 / 176
页数:23
相关论文
共 50 条
[21]   On the Equilibria of the Planar Equilateral Restricted Four-Body Problem with Radiation Pressure [J].
Muhammad, Shah ;
Duraihem, Faisal Zaid ;
Chen, Wei ;
Zotos, Euaggelos E. .
ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2021, 13 (04) :966-981
[22]   A study of the equilibrium dynamics of the test particle in the collinear circular restricted four-body problem with non-spherical central primary [J].
Suraj, M. S. ;
Bhushan, M. ;
Asique, M. C. .
ASTRONOMY AND COMPUTING, 2024, 48
[23]   Finiteness in the planar restricted four-body problem [J].
Kulevich J.L. ;
Roberts G.E. ;
Smith C.J. .
Qualitative Theory of Dynamical Systems, 2009, 8 (2) :357-370
[24]   Global Regularization of a Restricted Four-Body Problem [J].
Alvarez-Ramirez, Martha ;
Delgado, Joaquin ;
Vidal, Claudio .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (07)
[25]   Asymptotic orbits in the restricted four-body problem [J].
Papadakis, K. E. .
PLANETARY AND SPACE SCIENCE, 2007, 55 (10) :1368-1379
[26]   Dynamical properties of the restricted four-body problem with radiation pressure [J].
Kalvouridis, T. J. ;
Arribas, M. ;
Elipe, A. .
MECHANICS RESEARCH COMMUNICATIONS, 2006, 33 (06) :811-817
[27]   A Restricted Four-body Problem for the Figure-eight Choreography [J].
Lara, Ricardo ;
Bengochea, Abimael .
REGULAR & CHAOTIC DYNAMICS, 2021, 26 (03) :222-235
[28]   Nonlinear stability analysis in a equilateral restricted four-body problem [J].
Alvarez-Ramirez, Martha ;
Skea, J. E. F. ;
Stuchi, T. J. .
ASTROPHYSICS AND SPACE SCIENCE, 2015, 358 (01)
[29]   Nonlinear stability analysis in a equilateral restricted four-body problem [J].
Martha Alvarez-Ramírez ;
J. E. F. Skea ;
T. J. Stuchi .
Astrophysics and Space Science, 2015, 358
[30]   On the "blue sky catastrophe" termination in the restricted four-body problem [J].
Burgos-Garcia, Jaime ;
Delgado, Joaquin .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2013, 117 (02) :113-136