On Cubic Graphs Admitting an Edge-Transitive Solvable Group

被引:0
作者
Aleksander Malnič
Dragan Marušič
Primož Potočnik
机构
[1] Univerza v Ljubljani,IMFM, Oddelek za matematiko
来源
Journal of Algebraic Combinatorics | 2004年 / 20卷
关键词
symmetric graph; edge transitive graph; cubic graph; trivalent graph; covering projection of graphs; solvable group of automorphisms;
D O I
暂无
中图分类号
学科分类号
摘要
Using covering graph techniques, a structural result about connected cubic simple graphs admitting an edge-transitive solvable group of automorphisms is proved. This implies, among other, that every such graph can be obtained from either the 3-dipole Dip3 or the complete graph K4, by a sequence of elementary-abelian covers. Another consequence of the main structural result is that the action of an arc-transitive solvable group on a connected cubic simple graph is at most 3-arc-transitive. As an application, a new infinite family of semisymmetric cubic graphs, arising as regular elementary abelian covering projections of K3,3, is constructed.
引用
收藏
页码:99 / 113
页数:14
相关论文
共 18 条
[1]  
Bouwer I.Z.(1968)An edge but not vertex transitive cubic graph Bull. Can. Math. Soc. 11 533-535
[2]  
Bouwer I. Z.(1972)On edge but not vertex transitive regular graphs J. Combin. Theory B 12 32-40
[3]  
Goldschmidt D.(1980)Automorphisms of trivalent graphs Ann. Math. 111 377-406
[4]  
Folkman J.(1967)Regular line-symmetric graphs J. Combin. Theory 3 215-232
[5]  
Ivanov A.V.(1987)On edge but not vertex transitive regular graphs Ann. Discrete Math. 34 273-286
[6]  
Malnič A.(2000)Lifting graph automorphims by voltage assignments Europ. J. Combin. 21 927-947
[7]  
Nedela R.(2004)Cubic edge-transitive graphs of order Discrete Math. 274 187-198
[8]  
Skoviera M.(2004) 3 Discrete Math. 280 133-148
[9]  
Malnič A.(1998)An infinite family of cubic edge-but not vertex-transitive graphs Europ. J. Combin. 19 345-354
[10]  
Marušič D.(1948)Maps and half-transitive graphs of valency 4 Proc. Cambridge Phil. Soc. 43 459-474