On the Kauffman skein modules

被引:0
作者
Jianyuan K. Zhong
Bin Lu
机构
[1] Department of Mathematics & Statistics,
[2] Louisiana Tech University,undefined
[3] Ruston,undefined
[4] LA 71272,undefined
[5] USA. e-mail: kzhong@coes.latech.edu,undefined
[6] Department of Mathematics,undefined
[7] The University of Arizona,undefined
[8] Tucson,undefined
[9] AZ 85721,undefined
[10] USA. e-mail: binlu@math.arizona.edu,undefined
来源
manuscripta mathematica | 2002年 / 109卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
 Let k be a subring of the field of rational functions in α, s which contains α±1,s±1. Let M be a compact oriented 3-manifold, and let K(M) denote the Kauffman skein module of M over k. Then K(M) is the k-module freely generated by isotopy classes of framed links in M modulo the Kauffman skein relations. In the case of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, the field of rational functions in α, s, we give a basis for the Kauffman skein module of the solid torus and a basis for the relative Kauffman skein module of the solid torus with two points on the boundary. We then show that K(S1× S2 is freely generated by the empty link, i.e., \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}.
引用
收藏
页码:29 / 47
页数:18
相关论文
共 50 条
[41]   Frobenius algebras derived from the Kauffman bracket skein algebra [J].
Frohman, Charles ;
Abdiel, Nel .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2016, 25 (04)
[42]   The finiteness conjecture for skein modules [J].
Sam Gunningham ;
David Jordan ;
Pavel Safronov .
Inventiones mathematicae, 2023, 232 :301-363
[43]   Link bordism skein modules [J].
Kaiser, U .
FUNDAMENTA MATHEMATICAE, 2004, 184 :113-134
[44]   THE KAUFFMAN BRACKET SKEIN MODULE OF S(1)XS(2) [J].
HOSTE, J ;
PRZYTYCKI, JH .
MATHEMATISCHE ZEITSCHRIFT, 1995, 220 (01) :65-73
[45]   Representations of the Kauffman bracket skein algebra II: Punctured surfaces [J].
Bonahon, Francis ;
Wong, Helen .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2017, 17 (06) :3399-3434
[46]   GENERALIZED SKEIN MODULES OF SURFACES [J].
Boerner, Jeffrey ;
Drube, Paul .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2012, 21 (01)
[47]   Skein modules and the noncommutative torus [J].
Frohman, C ;
Gelca, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (10) :4877-4888
[48]   THE KAUFFMAN BRACKET SKEIN MODULE OF TWO-BRIDGE LINKS [J].
Le, Thang T. Q. ;
Tran, Anh T. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (03) :1045-1056
[49]   THE CATEGORIFICATION OF THE KAUFFMAN BRACKET SKEIN MODULE OF RP3 [J].
Gabrovsek, Bostjan .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2013, 88 (03) :407-422
[50]   Kauffman bracket skein module of the connected sum of handlebodies: a counterexample [J].
Bakshi, Rhea Palak ;
Przytycki, Jozef H. .
MANUSCRIPTA MATHEMATICA, 2022, 167 (3-4) :809-820