On the Kauffman skein modules

被引:0
作者
Jianyuan K. Zhong
Bin Lu
机构
[1] Department of Mathematics & Statistics,
[2] Louisiana Tech University,undefined
[3] Ruston,undefined
[4] LA 71272,undefined
[5] USA. e-mail: kzhong@coes.latech.edu,undefined
[6] Department of Mathematics,undefined
[7] The University of Arizona,undefined
[8] Tucson,undefined
[9] AZ 85721,undefined
[10] USA. e-mail: binlu@math.arizona.edu,undefined
来源
manuscripta mathematica | 2002年 / 109卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
 Let k be a subring of the field of rational functions in α, s which contains α±1,s±1. Let M be a compact oriented 3-manifold, and let K(M) denote the Kauffman skein module of M over k. Then K(M) is the k-module freely generated by isotopy classes of framed links in M modulo the Kauffman skein relations. In the case of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, the field of rational functions in α, s, we give a basis for the Kauffman skein module of the solid torus and a basis for the relative Kauffman skein module of the solid torus with two points on the boundary. We then show that K(S1× S2 is freely generated by the empty link, i.e., \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}.
引用
收藏
页码:29 / 47
页数:18
相关论文
共 50 条
[31]   Multiplicative structure of Kauffman bracket skein module quantizations [J].
Bullock, D ;
Przytycki, JH .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (03) :923-931
[32]   The structure of the Kauffman bracket skein algebra at roots of unity [J].
Charles Frohman ;
Joanna Kania-Bartoszynska .
Mathematische Zeitschrift, 2018, 289 :889-920
[33]   The Kauffman Skein Module at 1st Order [J].
Marche, Julien .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (22) :17413-17432
[34]   KAUFFMAN BRACKET SKEIN MODULE OF A FAMILY OF PRISM MANIFOLDS [J].
Mroczkowski, Maciej .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2011, 20 (01) :159-170
[35]   The finiteness conjecture for skein modules [J].
Gunningham, Sam ;
Jordan, David ;
Safronov, Pavel .
INVENTIONES MATHEMATICAE, 2023, 232 (01) :301-363
[36]   The Mod 2 Kauffman Bracket Skein Module of Thickened Torus [J].
Yan Xinming ;
Sun Meng .
Communications in Mathematical Research, 2018, 34 (01) :89-96
[37]   The quotient of a Kauffman bracket skein algebra by the square of an augmentation ideal [J].
Tsuji, Shunsuke .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2017, 26 (05)
[38]   A Mayer-Vietoris theorem for the Kauffman bracket skein module [J].
Lofaro, WF .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 1999, 8 (06) :721-729
[39]   Kauffman bracket skein module of the connected sum of handlebodies: a counterexample [J].
Rhea Palak Bakshi ;
Józef H. Przytycki .
manuscripta mathematica, 2022, 167 :809-820
[40]   The Kauffman skein module of a connected sum of 3-manifolds [J].
Zhong, JYK .
TOPOLOGY AND ITS APPLICATIONS, 2004, 139 (1-3) :113-128