On the Kauffman skein modules

被引:0
作者
Jianyuan K. Zhong
Bin Lu
机构
[1] Department of Mathematics & Statistics,
[2] Louisiana Tech University,undefined
[3] Ruston,undefined
[4] LA 71272,undefined
[5] USA. e-mail: kzhong@coes.latech.edu,undefined
[6] Department of Mathematics,undefined
[7] The University of Arizona,undefined
[8] Tucson,undefined
[9] AZ 85721,undefined
[10] USA. e-mail: binlu@math.arizona.edu,undefined
来源
manuscripta mathematica | 2002年 / 109卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
 Let k be a subring of the field of rational functions in α, s which contains α±1,s±1. Let M be a compact oriented 3-manifold, and let K(M) denote the Kauffman skein module of M over k. Then K(M) is the k-module freely generated by isotopy classes of framed links in M modulo the Kauffman skein relations. In the case of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, the field of rational functions in α, s, we give a basis for the Kauffman skein module of the solid torus and a basis for the relative Kauffman skein module of the solid torus with two points on the boundary. We then show that K(S1× S2 is freely generated by the empty link, i.e., \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}.
引用
收藏
页码:29 / 47
页数:18
相关论文
共 50 条
[21]   Sliced skein algebras and geometric Kauffman bracket [J].
Frohman, Charles D. ;
Kania-Bartoszynska, Joanna ;
Le, Thang T. Q. .
ADVANCES IN MATHEMATICS, 2025, 463
[22]   Representations of the Kauffman bracket skein algebra of the punctured torus [J].
Cho, Jea-Pil ;
Gelca, Razvan .
FUNDAMENTA MATHEMATICAE, 2014, 225 :45-55
[23]   A finite set of generators for the Kauffman bracket skein algebra [J].
Doug Bullock .
Mathematische Zeitschrift, 1999, 231 :91-101
[24]   Higher skein modules [J].
Andersen, JE ;
Turaev, V .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 1999, 8 (08) :963-984
[25]   The virtual magnetic Kauffman bracket skein module and skein relations for the f-polynomial [J].
Ishii, Atsushi ;
Kamada, Naoko ;
Kamada, Seiichi .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2008, 17 (06) :675-688
[26]   A finite set of generators for the Kauffman bracket skein algebra [J].
Bullock, D .
MATHEMATISCHE ZEITSCHRIFT, 1999, 231 (01) :91-101
[27]   The Kauffman bracket skein module of a twist knot exterior [J].
Bullock, Doug ;
Lo Faro, Walter .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2005, 5 :107-118
[28]   The structure of the Kauffman bracket skein algebra at roots of unity [J].
Frohman, Charles ;
Kania-Bartoszynska, Joanna .
MATHEMATISCHE ZEITSCHRIFT, 2018, 289 (3-4) :889-920
[29]   A basis for the Kauffman skein module of the product of a surface and a circle [J].
Detcherry, Renaud ;
Wolff, Maxime .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2021, 21 (06) :2959-2993
[30]   On the Kauffman Bracket Skein Module of the 3-torus [J].
Gilmer, Patrick M. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2018, 67 (03) :993-998