On the Kauffman skein modules

被引:0
作者
Jianyuan K. Zhong
Bin Lu
机构
[1] Department of Mathematics & Statistics,
[2] Louisiana Tech University,undefined
[3] Ruston,undefined
[4] LA 71272,undefined
[5] USA. e-mail: kzhong@coes.latech.edu,undefined
[6] Department of Mathematics,undefined
[7] The University of Arizona,undefined
[8] Tucson,undefined
[9] AZ 85721,undefined
[10] USA. e-mail: binlu@math.arizona.edu,undefined
来源
manuscripta mathematica | 2002年 / 109卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
 Let k be a subring of the field of rational functions in α, s which contains α±1,s±1. Let M be a compact oriented 3-manifold, and let K(M) denote the Kauffman skein module of M over k. Then K(M) is the k-module freely generated by isotopy classes of framed links in M modulo the Kauffman skein relations. In the case of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, the field of rational functions in α, s, we give a basis for the Kauffman skein module of the solid torus and a basis for the relative Kauffman skein module of the solid torus with two points on the boundary. We then show that K(S1× S2 is freely generated by the empty link, i.e., \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}.
引用
收藏
页码:29 / 47
页数:18
相关论文
共 50 条
[1]   On the Kauffman skein modules [J].
Zhong, JYK ;
Lu, B .
MANUSCRIPTA MATHEMATICA, 2002, 109 (01) :29-47
[2]   On Kauffman bracket skein modules at roots of unity [J].
Le, Thang T. Q. .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2015, 15 (02) :1093-1117
[3]   Kauffman bracket versus Jones polynomial skein modules [J].
Almeida, Shamon V. A. ;
Gelca, Razvan .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2022, 31 (05)
[4]   Kauffman bracket skein modules of small 3-manifolds [J].
Detcherry, Renaud ;
Kalfagianni, Efstratia ;
Sikora, Adam S. .
ADVANCES IN MATHEMATICS, 2025, 467
[5]   The Dubrovnik and Kauffman skein modules of the lens spaces Lp,1 [J].
Mroczkowski, Maciej .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2018, 27 (03)
[6]   Remarks on Chebyshev polynomials, Fibonacci polynomials and Kauffman bracket skein modules [J].
Owczarek, Robert .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2018, 27 (07)
[7]   The Kauffman Skein Algebra of the Torus [J].
Morton, Hugh ;
Pokorny, Alex ;
Samuelson, Peter .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (01) :855-900
[8]   Understanding the Kauffman bracket skein module [J].
Bullock, D ;
Frohman, C ;
Kania-Bartoszynska, J .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 1999, 8 (03) :265-277
[9]   The Kauffman skein algebra of a surface at √-1 [J].
Marche, Julien .
MATHEMATISCHE ANNALEN, 2011, 351 (02) :347-364
[10]   The Kauffman bracket skein as an algebra of observables [J].
Bullock, D ;
Frohman, C ;
Kania-Bartoszynska, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (08) :2479-2485