A new iterative method with ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document}-Laplace transform for solving fractional differential equations with Caputo generalized fractional derivative

被引:0
作者
Nikita Bhangale
Krunal B. Kachhia
J. F. Gómez-Aguilar
机构
[1] Charotar University of Science and Technology (CHARUSAT),Department of Mathematical Sciences, P. D. Patel Institute of Applied Sciences
[2] Vishwakarma Institute of Technology,Department of Engineering, Sciences and Humanities
[3] CONACyT-Tecnológico Nacional de México/CENIDET,undefined
关键词
Fractional derivatives and integrals; Diffusion processes; Partial differential equations; -Laplace transform;
D O I
10.1007/s00366-020-01202-9
中图分类号
学科分类号
摘要
In this paper, the new iterative method with ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document}-Laplace transform of getting the approximate solution of fractional differential equations was proposed with Caputo generalized fractional derivative. The effect of the various value of order α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and parameter ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} in the solution of certain well known fractional differential equation with Caputo generalized fractional derivative. Applications to the certain fractional differential equation in various systems demonstrate that the proposed method is more reliable and powerful. The graphical representations of the approximate analytic solutions of the fractional differential equations described by the Caputo generalized fractional derivative were provided and the nature of the achieved solution in terms of plots for distinct arbitrary order is captured.
引用
收藏
页码:2125 / 2138
页数:13
相关论文
共 97 条
[1]  
Morales-Delgado VF(2018)A novel fractional derivative with variable order and constant order applied to mass-spring-damper system Eur Phys J Plus 133 78-800
[2]  
Gómez-Aguilar JF(2017)A comaparision and analysis of Atangana-Baleanu and Caputo-Fabrizio derivatives for generalised Casson fluid model with heat generation and chemical reaction Res Phys 7 789-6303
[3]  
Taneco-Hernández M(2014)A fractional difussion equation model for cancer tumor Am Inst Phys 4 107121-340
[4]  
Escobar-Jiménez RF(2017)Oscillators with New fracional differentiation Entropy 19 6289-2496
[5]  
Sheikh N(1998)An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications Fract Diff Equ 198 1-996
[6]  
Ali F(2011)On approximate solutions for the time-fractional reaction-diffusion equation of Fisher type Int J Phys Sci 6 2483-50
[7]  
Saqib M(2019)Exact solutions of fractional-order biological populations model Commun Theor Phys 52 992-6303
[8]  
Khan I(2009)Fokker-Planck approximation of the master equation in molecular biology Comput Vis Sci 12 37-2350
[9]  
Jan S(2018)A Fokker-Planck equation for non-singular kernel operators J Stat Mech Theory Exp 2018 123205-85
[10]  
Alshomrani A(2017)Signal transmission biological reaction-difussion system by using synchronization Front Comput Neurosci 2017 6743276-769