Commutators of Marcinkiewicz integrals on Herz spaces with variable exponent

被引:0
|
作者
Hongbin Wang
机构
[1] Shandong University of Technology,School of Science
来源
关键词
Herz space; variable exponent; commutator; Marcinkiewicz integral; 42B20; 42B35;
D O I
暂无
中图分类号
学科分类号
摘要
Let Ω ∈ Ls(Sn−1) for s ⩾ 1 be a homogeneous function of degree zero and b a BMO function. The commutator generated by the Marcinkiewicz integral \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu _\Omega }$$\end{document} and b is defined by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left[ {b,{\mu _\Omega }} \right](f)(x) = {\left( {\int_0^\infty {{{\left| {\int_{\left| {x - y} \right| \leqslant t} {\frac{{\Omega (x - y)}}{{{{\left| {x - y} \right|}^{n - 1}}}}\left[ {b(x) - b(y)} \right]f(y){\text{d}}y} } \right|}^2}\frac{{{\text{d}}t}}{{{t^3}}}} } \right)^{1/2}}$$\end{document}. In this paper, the author proves the (Lp(·)(ℝn),Lp(·)(ℝn))-boundedness of the Marcinkiewicz integral operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu _\Omega }$$\end{document} and its commutator [b, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu _\Omega }$$\end{document}] when p(·) satisfies some conditions. Moreover, the author obtains the corresponding result about \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu _\Omega }$$\end{document} and [b, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu _\Omega }$$\end{document}] on Herz spaces with variable exponent.
引用
收藏
页码:251 / 269
页数:18
相关论文
共 50 条