New periodic solutions of ITO’s 5th-order mKdV equation and ITO’s 7th-order mKdV equation

被引:3
作者
Peng L. [1 ]
Zuliang P. [1 ]
机构
[1] Dept. of Math, Zhejiang Univ, Hangzhou
关键词
Modified extended tanh-funetion method; Modified Joeobi elliptic function expansion method; Nonlinear wave equations; Symbolic computation;
D O I
10.1007/s11766-004-0020-2
中图分类号
学科分类号
摘要
Based on the modified Jocobi elliptic function expansion method and the modified extended tanh-function method, a new algebraic method is presented to obtain multiple travelling wave solutions for nonlinear wave equations. By using the method, Ito's 5th-order and 7th-order mKdV equations are studied in detail and more new exact Jocobi elliptic function periodic solutions are found. With modulus m→ 1 or m→ 0, these solutions degenerate into corresponding solitary wave solutions, shock wave solutions and trigonometric function solutions. © 2004 Springer Verlag.
引用
收藏
页码:44 / 50
页数:6
相关论文
共 8 条
  • [1] Wang M.L., Solitary wave solutions for variant Boussinesq equations, Phys. Lett. A, 199, pp. 169-172, (1995)
  • [2] Engui F., Extended tanh-function method and its application to nonlinear equations, Phys. Lett. A, 277, pp. 212-218, (2000)
  • [3] Shikuo L., Zuntao F., Et al., Jacobi elliptic function expansion method and periodic wave solutions of nonlinear equations, Phys. Lett. A, 289, pp. 69-74, (2001)
  • [4] Zuntao F., Shikuo L., Et al., New Jacobi elliptic function expansion and new periodic solution of nonlinear wave equations, Phys. Lett. A, 290, pp. 72-76, (2001)
  • [5] Elwakil S.A., El-Labanyb S.K., Et al., Modified extended tanh-function method for solving nonlinear partial differential equations, Phys. Lett. A, 299, pp. 179-188, (2002)
  • [6] Shoufeng S., Zuliang P., A note on the Jacobi elliptic function expansion method, Phys. Lett. A, 308, pp. 143-148, (2003)
  • [7] Ito M., An extension of nonlinear evolution equation of the KdV(MKdV) type to higher orders, J. Phys. Soc. Jpn., 49, pp. 771-778, (1980)
  • [8] Parkes E.J., Duffy B.R., Abbott P.C., The Jacobi elliptic-function method for finding periodicwave solutions to nonlinear evolution equations, Phys. Lett. A, 295, pp. 280-286, (2002)