Glutathione S-transferase P1 gene polymorphisms and susceptibility to coronary artery disease in a subgroup of north Indian population

被引:0
作者
M. A. Bhat
G. Gandhi
机构
[1] Guru Nanak Dev University,Department of Human Genetics
来源
Journal of Genetics | 2017年 / 96卷
关键词
glutathione ; -transferase; gene; single-nucleotide polymorphisms; coronary artery disease;
D O I
暂无
中图分类号
学科分类号
摘要
The present study aimed to investigate the association of g.313A>G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {g}.313\hbox {A}{>}\hbox {G}$$\end{document} and g.341C>T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {g}.341\hbox {C}{>}\hbox {T}$$\end{document} polymorphisms of GSTP1 with coronary artery disease (CAD) in a subgroup of north Indian population. In the present case–control study, CAD patients (n=200\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = 200$$\end{document}) and age-matched, sex-matched and ethnicity-matched healthy controls (n=200\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = 200$$\end{document}) were genotyped for polymorphisms in GSTP1 using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Genotype distribution of g.313A>G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {g}.313\hbox {A}{>}\hbox {G}$$\end{document} and g.341C>T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {g}.341\hbox {C}{>}\hbox {T}$$\end{document} polymorphisms of GSTP1 gene was significantly different between cases and controls (P=0.005\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P = 0.005$$\end{document} and 0.024, respectively). Binary logistic regression analysis showed significant association of A/G (odds ratio (OR): 1.6, 95% CI: 1.08–2.49, P=0.020\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P = 0.020$$\end{document}) and G/G (OR: 3.1, 95% CI: 1.41–6.71, P=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$=$$\end{document} 0.005) genotypes of GSTP1 g.313A>G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {g}.313\hbox {A}{\!>\!}\hbox {G}$$\end{document}, and C/T (OR: 5.8, 95% CI: 1.26–26.34, P=0.024\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P = 0.024$$\end{document}) genotype of GSTP1 g.341C>T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {g}.341\hbox {C}{>}\hbox {T}$$\end{document} with CAD. The A/G and G/G genotypes of g.313A>G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {g}.313\hbox {A}{>}\hbox {G}$$\end{document} and C/T genotype of g.341C>T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {g}.341\hbox {C}{>}\hbox {T}$$\end{document} conferred 6.5-fold increased risk for CAD (OR: 6.5, 95% CI: 1.37–31.27, P=0.018\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P = 0.018$$\end{document}). Moreover, the recessive model of GSTP1 g.313A>G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {g}.313\hbox {A}{>}\hbox {G}$$\end{document} is the best fit inheritance model to predict the susceptible gene effect (OR: 2.3, 95% CI: 1.11–4.92, P=0.020\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P = 0.020$$\end{document}). In conclusion, statistically significant associations of GSTP1 g.313A>G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {g}.313\hbox {A}{>}\hbox {G}$$\end{document} (A/G, G/G) and g.341C>T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {g}.341\hbox {C}{>}\hbox {T}$$\end{document} (C/T) genotypes with CAD were observed.
引用
收藏
页码:927 / 932
页数:5
相关论文
共 82 条
  • [1] Bhat MA(2016)Association of GSTT1 and GSTM1 gene polymorphisms with coronary artery disease in North Indian Punjabi population: a case-control study Postgrad. Med. J. 92 701-706
  • [2] Gandhi G(2008)Atherosclerosis and oxidative stress Histol. Histopathol. 23 381-390
  • [3] Bonomini F(2007)Genetics of cardiovascular diseases: from single mutations to the whole genome Circulation 116 1714-1724
  • [4] Tangattini S(2000)Role of oxidative stress in cardiovascular diseases J. Hypertens. 18 655-673
  • [5] Fabiano A(2005)Increased cardiovascular morbidity and mortality in Type 2 diabetes is associated with the glutathione S-Transferase theta-null genotype: A Go-Darts study Circulation 111 2927-2934
  • [6] Bianchi R(2005)Glutathione transferase Annu. Rev. Pharmacol. Toxicol. 45 51-88
  • [7] Rezzani R(2010)The 341C/T polymorphism in the GSTP1 gene is associated with increased risk of esophageal cancer BMC Genet. 11 47-462
  • [8] Cambien F(2000)Glutathione S-transferase genotype as a susceptibility factor in smoking-related coronary heart disease Atherosclerosis 149 451-374
  • [9] Tiret L(2007)Genetic polymorphism and function of glutathione S-transferase in tumor drug resistance Curr. Opin. Pharmacol. 7 367-187
  • [10] Dhalla NS(1988)A simple salting out procedure for extracting DNA from human nucleated cells Nucleic Acids Res. 16 1215-181