On the rate of convergence of the p-curve shortening flow

被引:0
作者
Jean C. Cortissoz
Andrés Galindo
Alexander Murcia
机构
[1] Universidad de los Andes,Department of Mathematics
来源
Nonlinear Differential Equations and Applications NoDEA | 2017年 / 24卷
关键词
-curve shortening flow; Convergence rate; Blow-up; 53C44; 35K55; 58J35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we give rates of convergence for the p-curve shortening flow for p≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge 1$$\end{document} an integer, which improves on the known estimates and which are probably sharp.
引用
收藏
相关论文
共 50 条
  • [41] On an asymptotically log-periodic solution to the graphical curve shortening flow equation†
    Tsai D.-H.
    Wang X.-L.
    Mathematics In Engineering, 2021, 4 (03): : 1 - 14
  • [42] Curve shortening in a Riemannian manifold
    Li Ma
    Dezhong Chen
    Annali di Matematica Pura ed Applicata, 2007, 186 : 663 - 684
  • [43] Curve shortening in a Riemannian manifold
    Ma, Li
    Chen, Dezhong
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2007, 186 (04) : 663 - 684
  • [44] On Gage-Hamilton's entropy formula and Harnack inequality for the curve shortening flow
    Guo, Hongxin
    Zhu, Sheng
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2023, 86
  • [45] A HIGHER ORDER SCHEME FOR A TANGENTIALLY STABILIZED PLANE CURVE SHORTENING FLOW WITH A DRIVING FORCE
    Balazovjech, Martin
    Mikula, Karol
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (05) : 2277 - 2294
  • [46] Affine self-similar solutions of the affine curve shortening flow I: The degenerate case
    Yu, Chengjie
    Zhao, Feifei
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 285 : 686 - 713
  • [47] Online Path Planning for Industrial Robots in Varying Environments Using the Curve Shortening Flow Method
    Huptych, Marcel
    Groh, Konrad
    Roeck, Sascha
    INTELLIGENT ROBOTICS AND APPLICATIONS, PT I: ICIRA 2011, 2011, 7101 : 73 - +
  • [48] Maximal regularity, the local inverse function theorem, and local well-posedness for the curve shortening flow
    Sahbi Boussandel
    Ralph Chill
    Eva Fašangová
    Czechoslovak Mathematical Journal, 2012, 62 : 335 - 346
  • [49] Maximal regularity, the local inverse function theorem, and local well-posedness for the curve shortening flow
    Boussandel, Sahbi
    Chill, Ralph
    Fasangova, Eva
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2012, 62 (02) : 335 - 346
  • [50] Zero-temperature 2D stochastic Ising model and anisotropic curve-shortening flow
    Lacoin, Hubert
    Simenhaus, Francois
    Toninelli, Fabio Lucio
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (12) : 2557 - 2615