Random walks on SL2(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{SL}_2({\mathbb {C}})$$\end{document}: spectral gap and limit theorems

被引:0
作者
Tien-Cuong Dinh
Lucas Kaufmann
Hao Wu
机构
[1] National University of Singapore,Department of Mathematics
[2] Institute for Basic Science (IBS),Center for Complex Geometry
[3] Université d’Orléans,Institut Denis Poisson, CNRS
关键词
Random walks on Lie groups; Random matrices; Local limit theorem; Berry–Eseen bound; Spectral gap; 60B15; 60B20; 37C30;
D O I
10.1007/s00440-023-01191-y
中图分类号
学科分类号
摘要
We obtain various new limit theorems for random walks on SL2(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{SL}_2({\mathbb {C}})$$\end{document} under low moment conditions. For non-elementary measures with a finite second moment we prove a Local Limit Theorem for the norm cocycle, yielding the optimal version of a theorem of É. Le Page. For measures with a finite third moment, we obtain the Local Limit Theorem for the matrix coefficients, improving a recent result of Grama-Quint-Xiao and the authors, and Berry–Esseen bounds with optimal rate O(1/n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(1 / \sqrt{n})$$\end{document} for the norm cocycle and the matrix coefficients. The main tool is a detailed study of the spectral properties of the Markov operator and its purely imaginary perturbations acting on different function spaces. We introduce, in particular, a new function space derived from the Sobolev space W1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{1,2}$$\end{document} that provides uniform estimates.
引用
收藏
页码:877 / 955
页数:78
相关论文
共 23 条