A problem with directional derivative in the theory of galvanomagnetic effects

被引:0
作者
Yu. G. Gurevich
V. V. Kucherenko
E. Ramires de Areiano
机构
[1] Cinvestav IPM,Departamentos de Matematicas y de Fisicas
来源
Mathematical Notes | 1999年 / 65卷
关键词
magnetoresistance; Laplace equation; directional derivative; Dirichlet problem; boundary-layer functions; magnetic field; estimate of the solution;
D O I
暂无
中图分类号
学科分类号
摘要
We construct an asymptotics of the solution the Laplace equation in a “long” rectangle with the directional derivative given on its “long sides” and Dirichlet data on its “short sides.” By using the asymptotics, we calculate one of the integral characteristics, namely, the magnetoresistance. We obtain new formulas for the low-magnetic field magnetoresistance.
引用
收藏
页码:436 / 446
页数:10
相关论文
共 12 条
[1]  
Wick R. F.(1954)Solution of the field problem of the germanium gyrator J. Appl. Phys. 25 741-756
[2]  
Lippmann H. J.(1958)Der Geometrieeinfluß auf den transversalen magnetischen Widerstandseffekt bei rechteckförmigen Halbleiterplatten Z. Naturforsch 13A 462-474
[3]  
Kuhrt F.(1993)Geometry of a sample and galvanomagnetic effects in semiconductors Semiconductors 27 349-352
[4]  
Akhieser I. T.(1996)New mechanism of magnetoresistance in bulk semiconductors: boundary condition effects Solid State Comm. 97 1069-1072
[5]  
Gurevich Yu. G.(1969)On the problem with directional derivative Mat. Sb. [Math. USSR-Sb.] 78 148-176
[6]  
Zakirov N.(1967)Boundary-value problems for elliptic equations in the domains with conic or corner points Trudy Moskov. Mat. Obshch. 16 209-292
[7]  
Gonzalez de la Crus G.(undefined)undefined undefined undefined undefined-undefined
[8]  
Gurevich Yu. G.(undefined)undefined undefined undefined undefined-undefined
[9]  
Prosentsov V. V.(undefined)undefined undefined undefined undefined-undefined
[10]  
Egorov Yu. V.(undefined)undefined undefined undefined undefined-undefined