Peptide hormone ghrelin enhances neuronal excitability by inhibition of Kv7/KCNQ channels

被引:0
作者
Limin Shi
Xiling Bian
Zhiqiang Qu
Zegang Ma
Yu Zhou
KeWei Wang
Hong Jiang
Junxia Xie
机构
[1] Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology,Department of Physiology
[2] Medical College of Qingdao University,Department of Molecular and Cellular Pharmacology
[3] State Key Laboratory of Natural and Biomimetic Drugs,undefined
[4] Peking University School of Pharmaceutical Sciences,undefined
来源
Nature Communications | / 4卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The gut-derived orexigenic peptide hormone ghrelin enhances neuronal firing in the substantia nigra pars compacta, where dopaminergic neurons modulate the function of the nigrostriatal system for motor coordination. Here we describe a novel mechanism by which ghrelin enhances firing of nigral dopaminergic neurons by inhibiting voltage-gated potassium Kv7/KCNQ/M-channels through its receptor GHS-R1a and activation of the PLC-PKC pathway. Brain slice recordings of substantia nigra pars compacta neurons reveal that ghrelin inhibits native Kv7/KCNQ/M-currents. This effect is abolished by selective inhibitors of GHS-R1a, PLC and PKC. Transgenic suppression of native Kv7/KCNQ/M-channels in mice or channel blockade with XE991 abolishes ghrelin-induced hyperexcitability. In vivo, intracerebroventricular ghrelin administration causes increased dopamine release and turnover in the striatum. Microinjection of ghrelin or XE991 into substantia nigra pars compacta results in contralateral dystonic posturing, and attenuation of catalepsy elicited by systemic administration of the D2 receptor antagonist haloperidol. Our findings indicate that the ghrelin/KCNQ signalling is likely a common pathway utilized by the nervous system.
引用
收藏
相关论文
共 50 条
  • [41] Regulation of KCNQ/Kv7 family voltage-gated K+ channels by lipids
    Taylor, Keenan C.
    Sanders, Charles R.
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2017, 1859 (04): : 586 - 597
  • [42] Cardiovascular KCNQ (Kv7) Potassium Channels: Physiological Regulators and New Targets for Therapeutic Intervention
    Mackie, Alexander R.
    Byron, Kenneth L.
    MOLECULAR PHARMACOLOGY, 2008, 74 (05) : 1171 - 1179
  • [43] Inhibition of KV7 channels causes rat renal vasoconstriction in vivo
    Sorensen, Charlotte Mehlin
    Holstein-Rathlou, Niels-Henrik
    Salomonsson, Max
    FASEB JOURNAL, 2012, 26
  • [44] Ca2+ dependence of calmodulin binding to Kv7 (KCNQ) K+ channels
    Shapiro, Mark S.
    Zaika, Oleg
    BIOPHYSICAL JOURNAL, 2007, : 456A - 457A
  • [45] Interactions between β-secretase BACE1 and neuronal Kv7 channels
    Huth, T.
    Hessler, S.
    Zheng, F.
    Lehnert, S.
    Rittger, A.
    Saftig, P.
    Schwake, M.
    Alzheimer, C.
    ACTA PHYSIOLOGICA, 2014, 210 : 36 - 36
  • [46] M-channels (Kv7/KCNQ channels) that regulate synaptic integration, excitability, and spike pattern of CA1 pyramidal cells are located in the perisomatic region
    Hu, Hua
    Vervaeke, Koen
    Storm, Johan F.
    JOURNAL OF NEUROSCIENCE, 2007, 27 (08) : 1853 - 1867
  • [47] Structural Insight into KCNQ (Kv7) Channel Assembly and Channelopathy
    Howard, Rebecca J.
    Clark, Kimberly A.
    Holton, James M.
    Minor, Daniel L., Jr.
    NEURON, 2007, 53 (05) : 663 - 675
  • [48] Kv7 (KCNQ) channel openers induce hypothermia in the mouse
    Kristensen, Line V.
    Sandager-Nielsen, Karin
    Hansen, Henrik H.
    NEUROSCIENCE LETTERS, 2011, 488 (02) : 178 - 182
  • [49] Electrophysiological and Molecular Analysis of Kv7/KCNQ Potassium Channels in the Inferior Colliculus of Adult Guinea Pig
    Juan Navarro-López
    Lydia Jiménez-Díaz
    Sandrine M. Géranton
    Jonathan F. Ashmore
    Journal of Molecular Neuroscience, 2009, 37 : 263 - 268
  • [50] Electrophysiological and Molecular Analysis of Kv7/KCNQ Potassium Channels in the Inferior Colliculus of Adult Guinea Pig
    Navarro-Lopez, Juan
    Jimenez-Diaz, Lydia
    Geranton, Sandrine M.
    Ashmore, Jonathan F.
    JOURNAL OF MOLECULAR NEUROSCIENCE, 2009, 37 (03) : 263 - 268