A smoothing Levenberg-Marquardt method for the complementarity problem over symmetric cone

被引:0
作者
Xiangjing Liu
Sanyang Liu
机构
[1] Xi’an Technological University,
来源
Applications of Mathematics | 2022年 / 67卷
关键词
complementarity problem; symmetric cone; Levenberg-Marquardt method; Euclidean Jordan algebra; local error bound; 65K05; 90C33;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose a smoothing Levenberg-Marquardt method for the symmetric cone complementarity problem. Based on a smoothing function, we turn this problem into a system of nonlinear equations and then solve the equations by the method proposed. Under the condition of Lipschitz continuity of the Jacobian matrix and local error bound, the new method is proved to be globally convergent and locally superlinearly/quadratically convergent. Numerical experiments are also employed to show that the method is stable and efficient.
引用
收藏
页码:49 / 64
页数:15
相关论文
共 44 条
  • [1] Alizadeh F(2003)Second-order cone programming Math. Program. 95 3-51
  • [2] Goldfarb D(2015)A modified two steps Levenberg-Marquardt method for nonlinear equations J. Comput. Appl. Math. 288 341-350
  • [3] Amini K(2003)Analysis of nonsmooth symmetric-matrix-valued functions with applications to semidefinite complementarity problems SIAM J. Optim. 13 960-985
  • [4] Rostami F(2005)An unconstrained smooth minimization reformulation of the second-order cone complementarity problem Math. Program. 104 293-327
  • [5] Chen X(2002)Convergence properties of the inexact Levenberg-Marquardt method under local error bound conditions Optim. Methods Softw. 17 605-626
  • [6] Qi H(1997)A nonsmooth inexact Newton method for the solution of large-scale nonlinear complementarity problems Math. Program. 76 493-512
  • [7] Tseng P(2002)Smoothing functions for second-order-cone complementarity problems SIAM J. Optim. 12 436-460
  • [8] Chen J-S(2005)Second-order cone programming methods for total variation-based image restoration SIAM J. Sci. Comput. 27 622-645
  • [9] Tseng P(1990)Finite-dimensional variational inequalities and nonlinear complementarity problems: A survey of theory, algorithms and applications Math. Program., Ser. B 48 161-220
  • [10] Dan H(2005)Robust Nash equilibria and second-order cone complementarity problems J. Nonlinear Convex Anal. 6 283-296