Rotational excitation of AlCl induced by its collision with helium: cross sections and collisional rate coefficients

被引:0
作者
Mama Pamboundom
Théophile Tchakoua
Mama Nsangou
机构
[1] The University of Ngaoundere,Department of Physics, Faculty of Science
[2] Université de Douala,LPF, UFD Mathématiques, Informatique Appliquée et Physique Fondamentale
[3] The University of Maroua,Higher Teacher’s Training College
来源
Astrophysics and Space Science | 2016年 / 361卷
关键词
Potential energy surface; Inelastic rotational collision; Cross sections; Collisional rate coefficients; Close coupling; ccsd(t)/aVQZ;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, inelastic rotational collision of AlCl with helium was studied. The CCSD(T) method was used for the computation of an accurate two dimensional potential energy surface (PES). In the calculation of the PES, Al-Cl bond was frozen at the experimental value 4.02678a0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$4.02678~\mbox{a}_{0}$\end{document}. The aug-cc-pVQZ basis sets of Dunning was used throughout the computational process. This basis was completed with a set of 3s3p2d2f1g bond functions placed at mid-distance between the center of mass of AlCl and He atom for a better description of the van der Waals interaction energy. The PES of AlCl-He was found to have a global minimum at (R=8.65a0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R=8.65~\mbox{a}_{0}$\end{document}, θ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\theta=0$\end{document} degree), a local minimum at (R=7.45a0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R=7.45~\mbox{a}_{0}$\end{document}, θ=82\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\theta=82$\end{document} degree) and a saddle point at (R=7.9a0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R=7.9~\mbox{a}_{0}$\end{document}, θ=56degree\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\theta=56~\mbox{degree}$\end{document}). The depths of the minima were 20.2cm−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$20.2~\mbox{cm}^{-1}$\end{document} and 19.8cm−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$19.8~\mbox{cm}^{-1}$\end{document} respectively for θ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\theta=0$\end{document} and 84 degrees. The height of the saddle point with respect to the global minimum was 1.3cm−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1.3~\mbox{cm}^{-1}$\end{document}. The PES, the result of an analytical fit, was expanded in terms of Legendre polynomials, then used for the evaluation of state-to-state rotational integral cross sections for the collision of AlCl with He in the close coupling approach. The collisional cross sections for the transitions occurring among the 17 first rotational levels of AlCl were calculated for kinetic energies up to 4000cm−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$4000~\mbox{cm}^{-1}$\end{document}. Collisional rate coefficients between these rotational levels were computed for low and moderate kinetic temperatures ranging from 30 to 500 K. A propensity rule that favors odd Δj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta j$\end{document} transitions was found.
引用
收藏
相关论文
共 144 条
  • [1] Agúndez M.(2012)undefined Astron. Astrophys. 543 A48-undefined
  • [2] Fonfria J.P.(1993)undefined Astrophys. J. 414 L129-undefined
  • [3] Cernicharo J.(1960)undefined Proc. R. Soc. Lond. 256 540-undefined
  • [4] Kahane C.(1970)undefined Mol. Phys. 19 553-undefined
  • [5] Daniel F.(1987)undefined Astron. Astrophys. 183 L10-undefined
  • [6] Guélin M.(1983)undefined J. Chem. Phys. 78 3952-undefined
  • [7] Apponi A.J.(1999)undefined J. Chem. Phys. 111 10520-undefined
  • [8] Barclay W.L.(1997)undefined Chem. Phys. 215 227-undefined
  • [9] Ziurys L.M.(1993)undefined Astron. Astrophys. 280 L19-undefined
  • [10] Arthurs A.M.(2000)undefined Astron. Astrophys. 363 L9-undefined