4D and 2D superconformal index with surface operator

被引:0
作者
Yu Nakayama
机构
[1] California Institute of Technology,
来源
Journal of High Energy Physics | / 2011卷
关键词
Supersymmetric gauge theory; Supersymmetry and Duality;
D O I
暂无
中图分类号
学科分类号
摘要
We study the superconformal index of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 4 $\end{document} super-Yang-Milles theory on S3 × S1 with the half BPS superconformal surface operator (defect) inserted at the great circle of S3. The half BPS superconformal surface operators preserve the same supersymmetry as well as the symmetry of the chemical potential used in the definition of the superconformal index, so the structure and the parameterization of the superconformal index remain unaffected by the presence of the surface operator. On the surface defect, a two-dimensional (4, 4) superconformal field theory resides, and the four-dimensional super-conformal index may be regarded as a superconformal index of the two-dimensional (4, 4) superconformal field theory coupled with the four-dimensional bulk system. We construct the matrix model that computes the superconformal index with the surface operator when it couples with the bulk \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 4 $\end{document} super-Yang-Milles theory through the defect hypermultiplets on it.
引用
收藏
相关论文
共 68 条
  • [1] Romelsberger C(2006)Counting chiral primaries in Nucl. Phys. B 747 329-undefined
  • [2] Kinney J(2007) = 1, Commun. Math. Phys. 275 209-undefined
  • [3] Maldacena JM(2006) = 4 superconformal field theories Phys. Lett. B 636 132-undefined
  • [4] Minwalla S(2006)An index for 4 dimensional super conformal theories Nucl. Phys. B 755 295-undefined
  • [5] Raju S(2009)Index for orbifold quiver gauge theories Nucl. Phys. B 818 137-undefined
  • [6] Nakayama Y(2010)Index for supergravity on Nucl. Phys. B 824 192-undefined
  • [7] Nakayama Y(2010) ×  JHEP 03 032-undefined
  • [8] Dolan FA(2011) and conifold gauge theory Commun. Math. Phys. 304 797-undefined
  • [9] Osborn H(2010)Applications of the Superconformal Index for Protected Operators and q-Hypergeometric Identities to JHEP 08 107-undefined
  • [10] Spiridonov VP(2010) = 1 Dual Theories Phys. Rev. Lett. 105 061603-undefined